Summation Conditions on Weights

STEPHEN M. BUCKLEY

1. Introduction and Notation

In this paper, we introduce a class of summation conditions on weights
which are equivalent to the dyadic weight conditions A%, A4, and BY, and
provide a useful alternative way of thinking of these weight conditions. We
then use this equivalence result to find a new proof of the boundedness of
the dyadic square function on L?(w) for any Ag weight w. (Usually one
shows, as in [4], that singular integrals, square functions, and related oper-
ators are bounded on weighted LP(w) spaces by using a good-\ inequality,
but we avoid such methods entirely.)

Our first task (Section 2) is to state and prove the main equivalence theo-
rem. The summation conditions we introduce here are related to the condi-
tions introduced by R. Fefferman, Kenig, and Pipher in [6], but the methods
employed are completely different. In Section 3, we utilize the results and
ideas of Section 2 to prove the boundedness of the dyadic square function
on weighted L?(w) spaces.

Harmonic analysis on “product spaces” has been the subject of much scru-
tiny in recent years (an overview of this field can be found in [3]), and so we
finish, in Section 4, by defining analogs of our summation conditions on
product spaces and by showing that they are related to the product Ag and
B conditions.

Throughout this paper, we will use “C” to indicate a constant that de-
pends only on p and the dimension 7. © =D(R") indicates the set of all
dyadic cubes in R”. For any Q € ®, D(Q) is the collection of proper dyadic
subcubes of Q, and Q is the dyadic double of Q (the smallest dyadic cube
properly containing Q). For any weight w and set S, w(S) denotes the inte-
gral of w over S, | S| denotes the Lebesgue measure of S, and wg = w(S)/|S|.
Unless otherwise specified, 1 < p < oo, but p is otherwise arbitrary.

2. A¢, B;, and Summation Conditions

In this section, we shall examine conditions on a weight w involving the sum
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A
(1) S(Qp, W) = E WQ( Qw) IQ’
QeD(Qy)

where Agw= Wo— W5. Before we state the main theorem, let us make the
following definitions.

DEI:"INITION. We say w is a dyadic doubling weight (written w € Db%) if
w(Q) < Cw(Q) for all dyadic cubes Q, where O is the dyadic double of Q
(the smallest dyadic cube properly containing Q).

DEFINITION. We say w is an AJ weight (written w € A9) if

-1
(T(l?_lS w><Té—lS W_l/(p—l)>p <K forall Qe®.

The smallest such X is referred to as the Ad norm of w and will be denoted
K, , or simply K,,. We say w is an AY wezght if there exists K’, e > 0 such
that, for all Q€D and all EC Q, we have

E ElY
e (1Y
w(Q) 0]
DEFINITION. We say w is a weak-By weight (written w e BY™¥) if

1 1/p 1
(l_Q—IS wp) sKI—é—IS w for all Qed.

If, in addition, w € Db¥, we say that w is a B weight. The smallest such X is
referred to as the Bd norm of w and will be denoted K, , or simply K.

REMARK 2.1. Note that, unlike the nondyadic case, the above reverse Holder
inequality does not automatically imply doubling. We require B;,’ weights to
be dyadic doubling in our definition, since this is necessary for the theory of
such weights to closely mirror the nondyadic case (for example, if weBd
then we A2).

THEOREM 2.2. Suppose w is a weight. Then
(i) weBZ & weDb? and S,(Q, w) < Kw)|Q| vO e D(R"), where r = p.
(ii) weAd@ weDb? and S,(Q, w) < Kwj|Q| vQ e D(R"), where r=
—1/(p 1).
(iii) we AL & weDb? and S(Q, w) < Kw}|0| VQe@(R"), where r=0
or r=1 (each is separately equivalent to w e A%).
(iv) S.(Q,w)=Kwj|Q| vQ e D(R"), forany 0<r<1.
The constant K in (i) and (ii) is equivalent to the |r|th power of the Bd or
Ad norm of w (up to a constant dependent onr). In fact,

1 clri+ielr < |r|+1 lr|
S — cll<k<—=—_cl*'cll,
r(r— 1) r(r 1) i

where c, and C, are dimensional constants, and C, =K,, for (i) and C,,=
K, for (ii). In (iv), K< C,/r(r—1), C, being a dimensional constant.
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REMARK 2.3. We can actually prove the following, which clearly implies (i):
(i) weBZ™ & S,(0, w) < Kwj|Q| vQ e D(R").

REMARK 2.4. Part (iii) (for the case r =0) and nondyadic versions of (i),
(ii), and (iii) (for the case r =0) were found by R. Fefferman, Kenig and
Pipher in [6], using different methods. It is natural to have two different
summation conditions equivalent to A%, since A2 is a limiting version of
both Ag (g = ) and Bg (g — 1). For some purposes, the condition involving
S1(Q, w) (the “S; condition”, for short) has advantages over the S, condi-
tion. For example, Muckenhoupt’s C,, condtion [13] is more similar to a lim-
iting B, condition than a limiting A, condition; in [1], we were able to get a
condmon involving S;(Q, w) equlvalent to dyadic C,, (since C,, weights are
not necessarily doubling, it was also important that we did not need w e Db?
to manipulate S;(Q, w)).

Before proving Theorem 2.2, we will state and prove a couple of lemmas
which are needed, but we first need to introduce some notation. We define
functions ¢, for every real number r as follows:

r

b, (x) = for r+0,1; -
r(r—1)
$1(x) = x log(2+x);
_ —log(x) for 0=x<1,
¢O(x)—{_3/2+2/x_1/2x2, for 1<x.

These functions are defined for all x=0 (¢,(0) = if r <0). A little cal-
culation shows that each of these functions is convex (i.e., ¢; > 0 for every
r). The definition of ¢, seems rather strange, but it is chosen so as to be a
C? function which is bounded below. Note also that ¢y(x) = —log(x) for all
x>0.

LEMMA 2.5. Suppose a; =0 for1<si<Nand a=(3, a;)/N>0. Then:
(i) Forallr+0,1,

E(a yar2=cl™! 2(¢,(a,) —$,(a)).
(ii) If, in addition, € < a;/a; for any pair a;, a;, then for all r e R,
j J
N N
S (@—a)?a = T 3 (bo(a) — 6,(@)).
i= i=1

The condition “e <a;/a;” is needed only for r <1.
The constants Cy and Cy . depend only on their subscripted variables.

REMARK 2.6. Actually, it is easy to show that, for » > 0, r # 1, the condition
on a4;/a;in (ii) can be eliminated, as long as we do not require the dependence
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on r to be quite as good near 0 and 1. To see this, note that we can assume,
by normalization, that a; =1=a,= .- = ay. If a5y <1/2N, then

X —v2=r—2 [ _1 2/ 1\ rl+1 _
. —_— —_— —_— > — o ) —
igl(a, aya ‘= (2N> (N) =|r(r—1)|Cy i§1(¢>,(a,) o,(a@)).

We postpone the proof of this lemma until after the proof of Theorem
2.2. However, we will now prove it in the case N=2 by a more intuitive
method than used to prove the general case, which will show why the lemma
“should” be true. To this end, let us restate the lemma in the case N=2,
using notation more suitable to that case. For any function f, we define
Ds(a, b) = f(a)+ f(b)—2f((a+b)/2). For ease of notation, if r is a real
number we also define D, to be Dy , where ¢, is as defined above.

LemMmAa 2.7. Suppose a,b>0. Then:
(i) Forallr+0,1,

(a—b)*(a+b) "2<C"*D,(a, b).
(ii) Ife<b/a<1/e then, for all r eR,
(a—b)2(a+b) ~2=Cl*'D,(a, b).

The size condition on b/a is needed only for r <1.

The proof of Lemma 2.7 involves the following elementary lemma, which
follows immediately from the fundamental theorem of calculus.

LeEmMA 2.8. If ¢ € C%(0,), and if 0< b<a, then

{(a+b)/2 S (a—b)/2

Dy(a,b)= S ¢"(x+y)dydx.

b

Proof of Lemma 2.7. Without loss of generality, we may assume that b <a.
We first prove (i). By the previous lemma,

D,(a,b)=SR(x+y)"2dxdy for any r=#0, 1,

where R=[b, (a+b)/2] %[0, (a—b)/2]. But now, if

(x.y)eR'= [b, a+b] >([a——b a—b]’

2 4 ° 2
then x+y~a+b and so
Dy(a,b) = SR, ¢"(x+y)dxdy ~ SR’(a+b)""2 dxdy~ (a—b)*(a+b) 2

As for (ii), a little calculation shows that our size assumption on a/b im-
plies ¢”(x4y) < C(a+b) 2 for all (x, y) e R, and so

Dy(a,b) = SR &"(x+y)dxdy < SR Cla+b) ~2dxdy=< C(a—b)*(a+b) 2
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It is also clear that the size condition is unnecessary when r>2. If 0<
r<2, then

ga Salx+y|"2 dxdy< —qa’,
0Jo r

from which it follows that the size condition is unnecessary for 1 <r <2 (or
even for 0<dé<r<2). O

The second lemma used in the proof of Theorem 2.2 follows easily from
Fatou’s lemma but, before we state it, we need to introduce some additional
notation. The set of all dyadic cubes of side-length 2™ will be denoted as
D,,(R”). If Q is a dyadic cube of side-length at least 2", then D,,,(Q) denotes
all dyadic subcubes of Q of side-length 2. If f: R” >R is any L"® func-
tion, we define f,,,(x) to be the average value of f on Q,, ., where Q,, , is the
cube for which x € Q,, » € D,,,(R").

LEMMA 2.9. Suppose |S|< oo, r>0, and ¢: [0, ) — (—r, ] is continuous.
Then, for any weight w,

S dow <lim 1nf§sqﬁowm.

m— —oo

With these two lemmas in hand, we are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let us fix QpeD, with side-length 2™, say. Sup-
pose w eBg. Then, using Lemma 2.5, we get

Sp(QosW)=<K 3 (wi—wp)|0]

QeD(Q)
=K El(am—'am——l)zK( ngim am_wé)olQOI)’
m= — G0
where
A = )y w5|Q|=S wrﬁo—m
QeD,, _n(Qo) Qo

Letting ¢ = w” and using Holder’s inequality, we get wQ <op and 50 @, <
6(Qyp). It follows that S (QO, w) =< K(a(Qp) — wQ0|QO|)

Now, if weB with B norm K,;, then 90, _K*pr and so S,(Q,w) <
Kw , where K is a constant of the required form. This proves half of (i) (in
fact half of (i’)). The proof of the corresponding half of (ii) is very similar,
SO we omit it.

To prove (iv), let 0 <r <1 and use Lemma 2.5 to get

Sr(QO: W)SK 2 (Wé_wé)lQl
QeD(Qy)

[o2]
=K X (ay-1—ay), where am=S wr;10—m
m=1 9

= Kao = CWéOIQ()I.
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To prove half of (iii), it is convenient to first define a measure u on D(Qy),
defined by

_ AQW 2
uien=(2" Yol

Using this notation, S,(Qg, W) = {p(g,) W5 di-
Now, if we A9, then w eAg for large enough p < o and so, by Holder’s
inequality, part (iv), and the proven half of (ii), we have

So(Quw)=|_  1dn

1/2 172
< g ws d ) (S watd, >
( oy 2F oy S F

< K(w§,|Qo))" (wgt |Qo)'?
=K|QO|’
as long as 0 <e <min(l,1/(p—1)).

Also, if w e A% then w e BZ for some p > 1. Thus, by Hélder’s inequality,
part (iv), and the proven half of (i),

SI(QO,W)':X@(Q , e dp

0

4 172 : 1/2
< S W4 Ed) (g w~_6d>
( oy 2 H ooy 2

< K(w5H|Qo) > (wg, | Qo)
=KWQ0|QOI’

as long as 0 < e <min(1, p—1). This finishes the proof of half of (iii).
We are left with proving the other halves of (i)-(iii). Suppose that

Sp(Qo,» W) < Cwg (Qo, W)
for some p > 1. Then, by Lemma 2.5,

w100 = CS,(Qo, W) = 0 ;Z,(Q )(wé’ —wh)|0|

::C(( lll’_l;l SQ W,f)—'WéJOIQQI).

Notice that, by Jensen’s lemma and Lemma 2.9, the limit actually exists and
equals 0(Qy), so we deduce that ng o<k wgolQol. This proves the other half
of (i’). The proofs of the other halves of (ii) and (iii) (in the case r =1) are
so similar that we omit them. (Note that, because of the “¢” condition in
Lemma 2.5, we need to assume w € Db? for (ii).)

In the case r =0, we can assume |Qy|=w(Qp) =1 by normalization (and
SO ¢o(wg,) =0). Now, by Lemma 2.5 and Lemma 2.9, we get
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1=C lim g ¢0(wm)zcgg ¢>0(w)_>_—cSQ log w.

H— —0o 0 0

It follows that exp {o logw=e~"C, which is equivalent to we A% (see 8,

Thm. IV.2.15]). This finishes the proof of the theorem. U

Now that we have proved Theorem 2.2, we go back to Lemma 2.5 and give
a proof of it for all N, as promised.

Proof of Lemma 2.5. We assume without loss of generality that a; = a,, ...,
ay. We fix a; >0 and let A={(a,,...,ay):0=<a,,...,ay<a;}. We define f
on A by

N N
flay,...,an) = ‘El(aj —a)’a{7*-C _El(fibr(aj) —¢,.(a)).
Jj= j=

Proving (i) is equivalent to showing f <0, as long as C= C)Jl“ is large
enough (because a; ~ @). To prove this, suppose @; < a for some i. Writing
d; for 9, , we get
(2) 3; f(az, ..., an) = —2(@—a;)a] ~*+ C(¢p,(@) — $1(a;)).

Now, for r#0, 1, ¢”(x) =x""2, which is monotonic and so
9, flay, ..., an) = —=2(ad—a;)a] ~*+ C(@—a;) min(a" =2, a] ~2).

If r<2 or a; = a,/2N, then we can conclude easily that 9; f(a,,...,ay)=0C
for large enough C. If, on the other hand, r > 2 and a; <a;/2N, then

(r—)(@@) —¢y(a)) =a ' —al 'z ta" ",
and so
C —r—1

Bif(az,...,aN)Z—ZZial’_2+z(r_l)a >0

for large enough C= C}J[H.

In either case, we have shown that 6; f(a,, ..., ay) =0 for any i for which
a; < a. Thus, f can only achieve its maximum on its compact domain 4 when
a; = a for all i. This clearly implies that @¢; = a, for all / and that f(a;,...,a;)=
0, giving us the required result.

To prove (ii), it suffices to show that f(a,,...,ay)=0, as long as a; = eq
and C= CII\'," *1is small enough, and that the size restriction on ¢; is unneces-
sary if r = 1. Without loss of generality, we may assume that e <1/2N. Sup-
pose again that a; < a for some i. From (2), we get

8 /(s .., ay) < —2@—a)a{ >+ C(@—a;) max(@ =% o 72),

because a little calculation shows that ¢/(x) <2x"~2 for any r e R. Thus, if
r=2ora;=ea,thend; f(a,,...,ay) <0 for small enough C > 0. This allows
us to argue, as in (i), that f(a,,...,ay)=0whenr=2or foranyreRif q; =
ea; for all i.
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We are left only with the case where 1 =7 <2 and q; < ea, for some i. We
first assume 1 <r <2 and normalize so that ¢, =1. In this case,

1
4N?

Thus it suffices to show that, for large enough C = Cy, ¢,(q;) —¢,(a) < Cif
a; > a (since it is trivial if ¢; <a). This follows from the fact that 1-x"<
Cy(r—1) whenever 1<r<2and x=1/N.

In the case r=1, we have

o1(x) =

f(a2: seey aN) =

N
—-C .El((br(aj) - d’r(a—))
j=

2 1 2
+ = .
2+x)?  24x 2+x
If a; < a, then it follows from (2) that
—2(a—ay) + C(a—a;) -0
ay 2+a,-

d;f(az,...,an) =

for small enough C= Cy, if a; is not very large (a; < 10N, say), and so we
get that f(a,, ..., ay) = 0 by the usual argument. If ¢, > 10N (and so @ > 10),
and if @; < ea, for some i, then let = Ef;l(ci)l(aj) —¢1(@)). We need to show
that & < Ca. To see this, we write

N N
2=7 3 GG/ =61+ 3 61(@) = 89:(%/2) ~$,(@)+39(1)
Jj= i=

= Cbl+(b2.

Now &, < Ca, since it covered by the case a; <10N.
As for ®,, we note that

2+a;
b1(aj) —ady(a;/a@) = a; log( % )

2+aj/(7
and that
= _ 2+a 1 X 2+4+a
— = 278 1 ,
$1(a) —agp(1) alog(2+1> N,-aaf 0g< 3 )
and so
N 3(2+a;)
d, = | J < Ca.
2 Elaf °g<(2+aj/zz)(2+c—z)> ¢
This completes the proof of the lemma. ]

3. The Dyadic Square Function on L2(w)

For any locally integrable function f, let us define the dyadic square func-
tion S, f (subscripting the “d”, meaning “dyadic”, is inconsistent with our
previous notation, but convenient because we often wish to consider S3 f,
the square of S, f) by the equation

Sif(x)= 3 (fo—Jfa)

xXeQed
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One can prove that S, is bounded on L?(w) for weAg using a good-\
argument, similar to Coifman and C. Fefferman’s [4] proof that a singular
integral operator is bounded on LP(w). We shall get this result (Theorem
3.6) for p =2 in a completely different manner, using the results of the pre-
vious section (Rubio de Francia’s extrapolation theorem {14] can then be
used to show S, is bounded on LP(w) for all 1< p< o, and all w eAg).

Interestingly, the K,,-dependence of the operator norm which we get in
Theorem 3.6 is actually the same dependence as we could get by good-\
methods, if we used Chang, Wilson, and Wolff’s [2] sharp good-\ estimate
for Sd'

LEMMA 3.1. Let QyeD. Let u be a positive measure on D(Qq) and let v be
a positive measure on R". If, for all Q € D(Qy), n(D(Q)) < v(Q), then for
all feLb®,

®) folP dm@=C|_aepyray,

S D(Qy)
where M denotes the dyadic maximal function.

Proof. Without loss of generality we may assume that 0 < »{(Q,) < o, that
S =0, and that f is supported on Q, (since truncating f in this fashion de-
creases the right-hand side of (3) but leaves the left-hand side unchanged).
Let {OF} be the set of maximal dyadic cubes Q for which (1/|Q)|) |, f = 2%.
Also let ag=pu({Q}). Then

B =3 fhe
SSD(Qo) o “k ¢ 9%0) ore
521)2 2kp 2 7]
kj  QeDQf)

<27 3 2%Py(Qk) < CS (MAF)? dy. 0
k,j Qo

REMARK 3.2. Clearly, we could have replaced f3 by fg in the statement of
the above lemma because fp<2"f5. However, the lemma is useful in its
present slightly stronger form.

LemMa 3.3.  Ifwe AY, then |M2f |\ Lron < CKE'|| fIlLrcw)- The power KE' is
best possible.

REMARK 3.4. The nondyadic version of this result is basically due to Muck-
enhoupt [12] in the 1-dimensional case, and Coifman and C. Fefferman [4]
in the n-dimensional case, but they did not examine the dependence on X,.
This examination and another proof of this result can be found in [1]. Any
of these proofs can be easily modified to handle the dyadic case.

CoROLLARY 3.5. Ifpand v areas above and if, in addition, dv(x) = w(x) dx
for some we A4, then

p < P’ p
o, 8@ =CKL |  f7d».
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Proof. Just combine Lemma 3.1 and the dyadic version of Lemma 3.3. [
THEOREM 3.6. If we AY, then §(S] f)w=CK} | f>w.
Proof. First, note that

Jsifw= 3 w@e=1o)*= 3 WO fo=f0)’=

QeD
so it suffices to control W. An examination of the proof of Lemma 2.5 indi-
cates that, in the case r = 2, the inequalities in (i) and (ii) are replaced by an
equality. Using this equality, we get

w=3 wONf5—13)

0ed

= 3 W) fo—wO) B+ T (W) ~2"w(Q)) [}
Qed Qed

- Wl + Wz.

Now W, =21 - —o(@n—am41), Where

= 3 2w(Q)g=2"{ 12w

Qed,
Clearly,

a,<C S(Mdf)zw < CK? S 2w,
by Lemma 3.3. Thus W, < CK}? szw.

Next,
Wr= 3 ((0) =2 WONG-13)
3y _ 97 2 172 3 172
s( g Q) —27w(Q)) (fQ+fQ>2) ( » W(Q)(fQ—fQ)2>
Qe® w(Q) QeD

=WiPW' i< (W +W)/2.
Thus, W= CK} { f>w+3W;+ W, so it suffices to show that
W, < CK3 S 2w,

Since fo=Cfp we have W3 < C 2peop ané, where
Apw
ag=mo( S 'lol

and Ay is as in the definition of S,(Q, w). Now w e Bf, 5, where 6 ~ K, ! and
K, 1+5=<2 (as is revealed by an examination of the constants in the proof
of [4, Thm. IV]). Therefore, by Holder’s inequality and the estimates for
the constants in Theorem 2.2,

Y ag=S1(Qo W) =(S1-5(Qo, W) S1+5(Qo, W)

QeD(Qy)
2 Y9 _ o,
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Thus, it follows from Corollary 3.5 that

S apfi=CK, K S w.
QedD

4. Summation Conditions on Product Spaces

In this section we look for a generalization of Theorem 2.2 in the setting of
so-called “product spaces”. By a product space, we mean a space R% x R%2 x
.-« X R%, where we are concerned with classes of operators invariant under
the k-parameter family of dilations

4) (X105 eees X)) = (01 X5 +ve 5 Op Xi)-

The main result of this section is true for such general product spaces but,
for ease of notation, we will confine our attention to the case k=2 (letting
d =d,+d,). Examples of operators invariant under such dilations on RXR
are the strong maximal function

1
M; f(x) _igﬂ TR] SR S

where we take the supremum over all rectangles with sides parallel to the
axes, and the double Hilbert transform

dy,dy,
H, f(x1,x;)= S(X1—y1, X2—3) :
2 1 2 SSRz 1 1 2 2 .Vl}’z

Some of the simpler results, such as the boundedness of M, on L?(R% x R%),’
which was first proved by Jessen, Marcinkiewicz, and Zygmund [10], can be
proved simply by iterating the 1-parameter results, but many problems can-
not be treated so simply.

Product versions of singular integrals were introduced by R. Feffer-
man [5] and shown to be bounded on L” for 1< p<oo. R. Fefferman and
Stein [7] later showed that such singular integral operators are bounded on
LP(w, R4 xR%) if w eAp(RdldeZ). (This weight space is the class of all
weights w on R%*% for which all dilations of w of the form (4) are uni-
formly in Ap(Rd ); equivalently, it is defined just like the ordinary A4, space,
except we replace arbitrary cubes by arbitrary “rectangles”, a “rectangle”
meaning anything one can get from a cube by a dilation of the form (4).)
This weight condition is in fact necessary and sufficient for the boundedness
of both product singular integral operators and M on L?(w, R% x R%), ex-
actly analogous to the 1-parameter case.

DErFINITION. The space of dyadic rectangles ®(R% x R?) is the set of all
rectangles R= Q; X @,, where Q, € D(RY) and O, € D(R?). We also define
D, m(RUXRY2) =D, (RY) X D,,(R?), the set of all dyadic rectangles of size
27 x 2™,

DerINITION. The product weight spaces B,f’ (R x R%) and A;,"(R‘“'1 x R%)
are defined in a similar fashion to the corresponding 1-parameter spaces,
except that we replace the dyadic cubes Q with dyadic rectangles R.
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Since this section will be concerned only with dyadic rectangles and prod-
uct weights on R% x R%, we will, for ease of notation, drop references to
R% xR? and simply write D, BZ, and AZ%. We do this also for the product
dyadic square function which we will soon define.

Forany R=0Q,; X 0, €D, wedefine *R= Q0 X Q,, R*= 0, X 03, and *R*=
Qf X Q3, where Qf denotes the dyadic double of Q;. For any subset 4 of
R%xR%, we define D(A4) to be the set of dyadic rectangles R such that
*R*S A. We define D,, ,,,(A) to be the set of all dyadic rectangles in D(A) of
size 2" x 2™,

For any fe L"*, we define the second-order difference

AR f=Jr—Sr—Tr*+ g

and the function f, ,(x)=fg for xe€R,, ,.x €D, ,. For any weight w,
we define the product space sum

2
S(Aw= 3 wﬁ(AR”’) IR|

ReD(A) Wpr

for any A< R% xR%. (To be consistent with Section 2, we should replace
wg by weg+ In this definition, but this is unnecessary since we will only deal
with weights w e AZ C Db and so wg ~ wsg+.) Our principal interest in this
sum lies in the case A= Rye D, but we need to consider more general sums
to derive the following theorem, which is our 2-parameter analog of Theo-
rem 2.2.

THEOREM 4.1.

(i) weBZ =S,(R, w)<Kwf|R| VReD.
(ii) weAg = S,(R,w) < Kwg|R| YReD, wherer=-1/(p—1).
(ili) we A% = S, (R, w) < Kwg|R| YReD, whenever 0<r=<1.

REMARK 4.2. We cannot get any satisfactory version of the opposite-direc-
tion implications in Theorem 2.2. In fact, if w: R4 x R% — (0, o) is an arbi-
trary measurable function for which w(x, x,) depends on x; alone, then
S, (R,w)=0 for all reR and all Re®. To address this problem, we could
define a sum with first-order differences as well as the second-order differ-
ence. For example, we could define, for Ry=0; (X0, ¢€D,

)ieiies

’ , AIQI X Qz,ow
S{(Ro, W)=8,(Ro, W)+ X Wy xg, | —
Q1 E@(QI,O) W

1XQs0

2
AQI,OXQ2W
Wo

2
) 10101021,
QZEQ(QLO)

where AL, and A% are first-order differences in each of the two directions (for
example, AL w = wg—w.z). With this definition, we can get equivalence in
our theorem (assuming w € Db¥, of course). However, the second-order sum
is then almost superfluous, since we can leave it out and still get equivalence.
This is because a weight w satisfies the product A¢ (or Bf) condition if and

+ E Wél,onz(

1,0XQ,
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only if both w(-, x;) and w(x;, :) are uniformly in 1-parameter Ag (resp.,
BZ) for almost all x; e R% and x, € R%. The product space equivalence fol-
lows easily by an iterated application of Theorem 2.2 in both variables. The-
orem 4.1, by contrast, does not follow easily from our previous results. To
prove it, we need the following three lemmas.

LeEmMMA 4.3. Let Q) be a bounded open set, let y be a positive measure on
D(N), and let v be a positive measure on Q. If u(D(A)) < v(A) for all open
ACQ then, forall fe L™,

Y du(R)y<C af)? dv.
5) [ T duRY=C | (r)7dv
If, in addition, dv=w(x)dx for some w € A3, then

g el duRy=C, | 717 dv.

Proof. Without loss of generality, we may assume that 0 < y({2) < oo, that
f =0, and that f is supported on £ (since truncating f in this fashion de-
creases the right-hand side of (5) but leaves the left-hand side unchanged).
We define A, = {xeQ: 29 < M9f} and ag = p({R)}). If 2% < fr<2%*!then
*R*< A, and so

p _ p
S@(n) JRAWR)= Y frog

D(2D)
k ReD(A4,)

<3 2+DP (4, )< C jQ(M;’f)Pp.

The rest of the lemma follows by the boundedness of M on L?(w), if we
Ag (which in turn follows easily by an iteration of the corresponding 1-
parameter result). O

We define the product square function by S3 f(X) =3, cren(ArS)> We
now show that S, is bounded on L?(w) for w € A%. The easy proof is by an
iteration technique very similar to that used in [7].

LEMMA 4.4. IfueAj, then [(S5f)u=K || f|*u for some constant K.

Proof. First, we note that

[s3hu= % arenuwr).
ReD
By the 1-parameter theory (i.e. Theorem 3.6),

| 3 (o f)u@uxdn =K | | £200, xutn, x2) dx ax,
0,eD(R2)
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where fy (X2) = f(x1, x;) and u(Qy; x1) = [g, u(x1, ;) dy,. If we now ap-
ply the 1-parameter theory to the function x;~ Ao, f, and the weight x;—
u(Q,; x;), the lemma then follows because Ag=Ag Ag,. O

The next lemma is due in its original form to Peter Jones [11]. Jawerth [9]
extended it to cover more general types of weight spaces, including the prod-
uct spaces we are dealing with here.

LeMMA 4.5. IfweAg, then w=w,wi™? for some wy, w, € A{.

Proof of Theorem 4.1. We will prove (i)-(iii) for a fixed rectangle R,. First,
for any open Q € R, we will show that, if we A2, then

(6) S wy= Y wrl(Agw)?|R| = Kw(Q).
ReD(Q)

It suffices to show this under the additional assumption that w is bounded
on © since, if u is a general A2 weight, we would then get (6) for the bounded
weights u,, , for all m, neZ. This is easily seen to imply (6) for w=u by
letting m, n —» —oo,

Since we A%, w=w;wi~? for some w,, w, € A and some 1< p < co (we
may assume p >2). Letting u=wy !'(and so u € A9), and applying Jensen’s
inequality and Lemma 4.4 (with f=wxg), we get

Y w)R'ArwR|= Y (ArS)’u(R)
ReD@) RED@)

SKS w2u=KS wywi 2P,
0 Q

We now apply the A{ condition twice, Jensen’s lemma, and Lemma 4.3
with p({R}) = (w))g'(Agw)?|R| and dv = w; w3 % dx, to get

> wrlArw)iR|= Y (WA T(w)R'(ARW)?|R]
ReD() ReD(Q)

SKSQ(M;IWZ)p—IWI W§_2p

=K §9 wi ™ w w32 = Kw(Q),

which proves (6). |
To prove (i), we know that we AZ for some 1< g<oo. If u=w®~14,
then w§ _ISu,‘% (by Holder’s inequality if p—1=g¢q, and because weBg
otherwise). Thus
S wE(Arw)P|R|= 3 ufwr'(Agw)’|R
ReD(Ry) ReD(Ry)
SKS u?w (by Lemma 4.3)

0

=KSR w? < Kwg |Ry|.

0
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To prove (ii), we let 0 = w277 as usual, and now

S(Ro,w)= 3 wr' P (Agw)?|R|

ReD(R,)
= 3 o}?w;l(ARw)Z[RI (by Jensen’s inequality)
ReD(Ry)
SKSR o’w (by Lemma 4.3)
0

=K | o=<Kwp|Ro|.

R, o< Kwg |Ro|
Finally, part (iii) follows easily since if we A% then we A% for some p,
so we simply interpolate (or use Holder’s inequality, as in Theorem 2.2) be-
tween (ii) and the case r =1 of (iii) (which is implied by (6)). (]

It is interesting to ask if we can prove Theorem 4.1 in a manner similar to
the proof of Theorem 2.2. To do so, we would need an analog of Lemma
2.5 suited to the product setting. Lemma 4.6 below leads to a proof of (i) in
the case 1< p<2 (we only need the “evenly weighted” case, i.e. ;=1/N,
s;=1/M for all i, j). However, the lemma is false for values of r outside
the range 1 <r<2, as random inspection will show, so it is not possible
to give such a proof for all of Theorem 4.1. Another drawback to this meth-
od of proof is that it does not easily extend to the case of more than two
parameters.

For Lemma 4.6, we have numbers @; ;>0 for1<i=<N, 1=j=<M, and
we assume in addition that e <g; ; /a; ; for some ¢ >0 and all pairs ¢; ;
and a; ;. We also have weights ¢; = 0 for 1 =i/ < N, not all of which are zero,
and s; =0 for 1= j <M, not all zero. We define a=(X; ; 1;s;a; )/ (2, 1;S;),
where “%; ;” stands for “»N, Ej”il”. We also define the marginal weighted
averages 5,' = (Ej Sja,’J)/(EJ Sj) and Ei,l = (2, l‘,-a,-’j)/(E,- tl)

LEMMA 4.6. Suppose a; ;>0, t;=0, and s;=0 are as described above.
Then, forall 1<r=<2, we have

Y tisia;, j—a;—a;+a)ya > <K 3 ys;(al j—af —aj+a’),

bt i, J
where K depends only on r, N, M, and e.

REMARK 4.7. There are two reasons for proving a weighted version of this
lemma. First, it does not seem possible to prove a product version of the
lemma using only the techniques of maximization, although it is possible to
prove it in the case N= M =2 by transforming the problem, using a method
similar to the proof of Lemma 2.7, into a different inequality that can be
more easily proven, using maximization techniques. This naturally suggests
attempting to prove a weighted version of the lemma to allow us to get the
general case by induction (we in fact do this in the proof of the lemma). The
second reason is that, by considering partial derivatives with respect to the



168 STEPHEN M. BUCKLEY

weighting variables, one gets a completely different and considerably easier
proof than is otherwise possible.

REMARK 4.8. The above lemma cannot be interpreted in terms of convex-
ity, unlike Lemma 2.5 (in the case N = 2). It just happens to be true by “sheer
luck”. In fact, it is difficult to intuitively understand why it “should” be true
for this range of r, but not for other r.

Proof of Lemma 4.6. We first look at the case N= M = 2. We can as-
sume that #;+7¢,=1 and s;+5,=1 by homogeneity. We can also normal-
izesothate<aq; ;<1. Wewrite t =4, 1—t=1¢,,s=5,1-5=8,,d=
ay,1—ay,2—d2,1+ 0, and

f(S, t)=st(1—-s)(1-—t)dz—-Kzt,-sj(a,-',j—ﬁ{—ﬁ,ﬂ-+ﬁ’).

Now, because of the restriction on the size of a; ; /a;, ; , the lemma reduces
to showing that f(s, ) <0 for large enough X, where K depends only on r
and e. We note that f(0, )= f(1,1)=f(s,0)=f(s,1)=0for all s, f € [O, 1].
Differentiating twice in both s and ¢ yields 8?92f(s, t) =4d*— Ko2a2(a"),
because the other terms are harmonic in either s or . Now, if we define b =
(@ —a )(a,—a,), then a little calculation shows us that

020X (a"y=r(r—1)a " *Qd*a*—4(2—r)dba+(2—r)(3—r)b?)

=c.d*a" " *=c,d?

where ¢, depends only on r. If r=2, the first inequality is obvious. If 1 <
r<2, it follows because the parenthesized expression can be written as a
perfect square added to c/d*@?, where c; depends only on r. To see this, note
that this expression is a quadratic in d@ and that

42){2—r)(3—r)b*3}—(4(2—r)b}?=8(2—r)(r—1)b%>0.

Thus, 8202 f(s, t) < 4d*—K(c,d?*) < 0 for K sufficiently large, and so 82f(s, t)
is superharmonic in ¢. Since

32f(s,0)=082f(s,1)=0,

it follows that 82f(s, t) =0, so that f is subharmonic in s. Since f(0, )=
f(1,1), it follows that f(s, t) <0, as required. This finishes the proof in the
case M=N=2.

To prove the result inductively for all N and M, it suffices, by symmetry
of N and M, to prove that it is true for (N, M) = (Ny, My+1) whenever it is
true for (N, M) = (Ny, M,). Let us assume the result for (N, M) = (Ny, My)
and suppose that we are given ¢; ; >0, ;=0, and s; =0 for 1 =i=N,, 1=
J=My+1. We can assume e<¢; ;<1 and PP lt =1 by normalization.
We can also assume E = s; =1 (this is only a problem if the sum is O, in
which case the mductlve step is trivial). We define 4 = 3 N¢, E 21 4;s5a; j and
d,-=Ej-”=°1 sja;, j (@ and a; will denote weighted averages for the larger set
of numbers).
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Now it is easy to show that, if {bj}f}":"l is any set of numbers and b=
> Mo, s;b;, then for any N eR,

M, . M, "
3 si(b;—N)?=(\—b)>+ 3 s;(bj—b)>.
Jj=1 Jj=1

Using this equality, we get

2 t,-Sj(a,-,J-——Zi,-—c_l,j+ﬁ)2

I<i<N,
I1=j=sM,+1 _ A — Ay2
/ 0 = E t,-sj(a,-,j—a,-—a,j+a)
I=si=N,
1<j<M
(7) C
+ > tag—a—a;+a)
I<i=<N,
~ = —\2
+ 2 Sy (@i g1 — T — gy 1+ T)
l=<i<N,
Also,
2 t‘,-sj(a,-’:j—ﬁ,-’—&j-+c"z’)
I=<i=<N,
Isj=sM,+1 _ A = A
J=Mo = Y sl j—af—a’;+a’)
I1<isN,
l=j=M,
+ X 4sjai—a" —aj+a’)
l<i=N,
I=sj=M,
(8) + X iSp+1(@ M1~ 8 — 8y T
I=i=N,
= E t,-sj(a,-fj—é{-—d,:,-+d’)
1=i=N,
I=j=M,
+ ) taf—-a" —al+a’)
I=<i=N,
+ X Smy+(@ M1 — A — B pg 1+ A7),
I=i=N,

The first term in (7) is a left-hand side of the inequality for (N, M) = (Ny, M)
and so, by the inductive hypothesis, is less than a constant times the first
term in (8), which is the corresponding right-hand side. The sum of the last
two terms in (7) is a left-hand side of the inequality for (N, M) = (N, 2)
and so, by the inductive hypothesis, is less than a constant times the sum of
the last two terms in (8), which is the corresponding right-hand side. Thus
the lemma is true by induction. 1
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