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ABSTRACT 
 
This paper presents a comparison between parallel linear and parallel neural network models. Parallel models consist of 
24 separate models, one for each hour of the day.  Each parallel model decomposes the load into a linear Auto-
Regressive (AR) part and a residual. Exogenous linear and neural network model performance is compared in 
predicting this residual. Three days or 72 hours of current and delayed weather variables are available as exogenous 
inputs for the residual models. Input selection comprises of testing the bootstrapped performance of a linear model. The 
inputs are ordered using 4 methods derived from a mix of the T-ratio of the linear coefficients and Principal Component 
Analysis (PCA). The neural network models are found to give superior results due to the non-linear AR nature of the 
residual.  
 
 

1 INTRODUCTION 
 
 

1.1 SYSTEM BACKGROUND 
 
The Irish climate may be described as oceanic temperate 
with few weather extremes [1]. There is a strong 
correlation between weather and demand.  In an Irish 
context, while extreme weather conditions rarely occur, 
week to week variations can be quite significant. The 
weather affects the load mainly due to heating 
requirements [1].  
 
Irish demographics consist of a population of 3½ 
million with 2 million living in the greater Dublin area. 
The weather measurements used in this study are thus 
made at Dublin airport.  
 
The national grid is essentially an isolated system with a 
lack of strong interconnection, with a yearly peak of the 
order of 4000 MWs [2].  
 
 

1.2 RESEARCH OBJECTIVES 
 
Individual linear models for each hour of the day, also 
known as linear parallel models, have been examined by 
[3] and [4] and found to be advantageous in 
representing differing time of day fluctuations. Non-
linear techniques have been shown to provide superior 
results to linear techniques both in the Irish context and 
for other systems [1,5,6,7]. The purpose of this study is 
to examine the benefits of applying a parallel Neural 
Network (NN) model to Irish electricity demand data.  
 

The modelling approach consists of decomposing the 
load into a linear AR part, y(t), and a residual r(t). 
[3,4,5] Have taken similar approaches. The residual is 
then modelled using exogenous weather inputs and in 
the case of the neural network additional lagged residual 
inputs (Figure 1).  

Figure 1 Load residual modelling approach 
 
 

1.3 DATA SET DETAILS 
 
A database of electricity demand from 1987 to 1998 on 
an hourly basis is available. The data is sifted for data 
between Tuesday and Thursday in the months January 
to March to avoid weekend, Christmas and daylight 
savings hour, changes in the data. This forms a late 
winter mid-week series of data, which is sifted by hour 
of the day to form 24 parallel series. 
 
Three sets of data are used to tune and test the models 
(Table 1).  The training set is used for training the linear 
and neural models. During training of the neural model 
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the validation set is used to prevent overtraining 
(Section 5.1). Linear and neural model performance is 
compared over the novelty set.  
 

Table 1 Segmentation of data set. 
Set Training  Validation  Novelty  
Range 20th Jan ‘87 

20thMar ‘96 
21stMar ‘96 
19thMar ‘97 

20thMar ‘97 
26thMar ‘98 

Size 
(Days) 

300 30 30 

 
 Four exogenous inputs are available formed as the past 
72 hours of weather relative to each load demand point, 
these are  

• Temperature  
• Humidity 
• Wind speed  
• Wind direction  

 
As wind direction is a circular mapping it is transformed 
into 2 inputs using sine and cosine transformations.  
 
 

2 A PRELIMINARY LINEAR MODEL 
 
The preliminary linear model removes the linear AR 
information of the load data. As there is a high degree of 
correlation between the weather and the load this 
information must also be extracted from the weather 
variables by use of a pre-whitening filter.  
 

2.1 MODEL STRUCTURE 
 
Twenty-four Basic Structural Models (BSM) [1,8] are 
used to model the AR component of the parallel series. 
The BSM consists of modelling the load yk at time k, as 
the sum of a trend component tk, a seasonal component 
sk with seasonal length N and a white noise error or 
residual rk defined by [7]: 

With  

And  

 
The BSM requires that the variances of tk, (σ2

t ) and sk 
(σ2

s) be tuned relative to the variance of rk (σ2
e). This 

may be achieved by use of prediction error 
decomposition [8] or by use of the IRWSMOOTH 
algorithm [9]. The models in this paper use the latter 
method to tune σ2

t and σ2
e. σ2

s is then tuned 
independently using prediction error decomposition [8]. 
  

Note on boundary conditions 
 
As the data is formed from appending data from Jan-
March and Tuesday-Thursday there is a time jump of 9 
months or 3 days between the boundaries. The trend 
component tk is updated at these boundaries using a 
Kalman filter run over all the data.  
 

2.2 MODEL RESIDUAL 
 
The residual rk for the 6pm series is shown in figure 21 
together with its Sample Auto-Correlation Function 
(SACF) (Figure 3).  
 

 
Figure 2 AR load residual (6pm series) 

 
Examination of the residual shows that rk is stationary in 
the sample mean. However, it is not stationary in the 
variance.  

Figure 3 AR load residual SACF (6pm series) 
 
The SACF of the residual shows no significant lags as 
the AR information has been removed.  
 
2.3 EXOGENOUS VARIABLE PRE-WHITENING 
 

                                                           
1 Data has been normalised for confidentiality reasons.  
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The weather variables are cross-correlated with sk as 
they are also seasonal. Thus they require pre-whitening 
to remove the correlated AR component. The pre-
whitening filter used is the BSM in (1) with the same 
parameters achieved by tuning with load data.  
  
 

3 INPUT SELECTION 
 
Input selection forms perhaps the most important step in 
model building [7]. Inclusion of non-causal variables 
leads to model performance degradation outside of the 
training set.  
 
The selection of the most significant weather inputs is 
examined here.  
 

3.1 PRE-PROCESSING TECHNIQUES 
 
A mixture of two techniques where examined for input 
selection. The first technique involves ordering the input 
variables relative to the variance/amplitude or T-ratio 
[10] of each input wi with coefficient ai using a simple 
linear model of the form  

 
Where rk is the residual to be modelled. The linear 
coefficients are calculated by means of least squares.  
 
The second technique employs PCA to transform wi into 
a set of orthogonal variables such that each variable 
represents the coefficient along a basis vector in the 
original data set [11]. The transformed variables or 
components are organised in descending order of 
percentage of variance explained in the original data set, 
thus the first component contains the highest level of 
information [11]. The target data rk is not used in the 
transformation and thus an assumption made when 
using PCA is that all the information in the input set is 
correlated to the target data. This is not always the case 
as in the trivial example where the target data is simply 
the second or higher order component.  
 
The methods examined for variable selection employing 
both T-ratio and PCA are: 
 
1. Identify most significant wi according to T-ratio 

alone.  
2. Use the T-ratio to identify 50 most significant 

variables. Transform using PCA and order 
according to variance explained.  

3. Transform wi using PCA and order according to 
variance explained. 

4. Transform wi using PCA and order using T-ratio.   
 

3.2 RESULTS 
 

When the exogenous or transformed variables have 
been ordered by significance (4) is evaluated using just 
the first component and then subsequent components 
until an optimal Mean Absolute Error (MAE) is found2. 
A bootstrap is used to increase the confidence of the 
resulting model performance.  
 
Bootstrapping involves training N identical models 
using the entire data set with each model using non-
overlapping test sets. In this case the test set size is 45 
points or one eighth of the data points. N is eight. The 
training set consists of all the data less the test set. 
Figure 4 shows the performance achieved with method 
3. The test set MAE’s reach a minimum at 10 
components. Table 2 summarises the performance over 
all hours of the day for each four methods. The 
optimum MAE achieved is given. Method 3 gives the 
best result. 
 

Figure 4 Bootstrapped MAE for method 3 (6pm 
series) 

 
Table 2 Input selection MAE (normalised)3 

 
The optimum number of components used in method 3 
is found to vary from 7 to 15 depending on the hour of 
the day. The mode is 10 and due to the computational 
expense of calculating the topology of neural networks 
10 components are used for all hours of the day.  

                                                           
2 The MAE is used in place of the Mean Absolute 
Percentage Error (MAPE) as the trend component tk of 
the data is increasing. It should be noted that the 
residual in not strictly stationary and this exaggerates 
the standard deviations of the bootstrapped MAE’s. 
 
3 Data has been normalised for confidentiality reasons.  
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Summary Method 1 Method 2 Method 3 Method 4
Mean MAE Test 0.90 0.90 0.86 1.00
Mean STD Test 0.13 0.13 0.13 0.15
Mean MAE Trn 0.83 0.87 0.83 0.96
Mean STD Trn 0.03 0.03 0.02 0.06
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4 LINEAR MODELLING 
 
The linear models are trained using the training set 
defined in Table 1. The input structure consists of the 
first 10 PCA components ordered using percentage of 
variance explained. The model is of the form  

Where ci is principal component i and ai is the 
coefficient applied to that component. The model 
coefficients are tuned via least squares.   
 
 

5 NEURAL NETWORK MODELLING 
 

5.1 MODEL STRUCTURE 
 
A multi-layer perceptron network using the back-
propagation learning algorithm [7,11] is used. Each 
network consists of 2 hidden layers with tansig 
activation functions as the data is normalised between ± 
1 and a linear activation function in the output layer.  
 
Each model is trained until a minimum is found over the 
validation data set (Table 1) or for a maximum of ten 
thousand epochs. Cessation of training at the validation 
set minimum prevents over-training of the NN [11].  
 

5.2 INPUT STRUCTURE 
 
As in the case of the linear model (Section 4) PCA is 
used to transform the pre-whitened weather variables 
and the first 10 components are used. From the SACF of 
the residual (Figure 3) identification of significant lags 
in rk is difficult to identify as the linearly AR element of 
the load has been removed. It was found that using rk-1 

and rk-2 as additional inputs gave the best results.   
 

5.3 TOPOLOGY DETERMINATION 
 
The topology of a NN determines the degrees of 
freedom available to model the data [11]. If the NN is 
too simple then the network will generalise, while an 
over-complex NN will learn the noise in the data and 
performance over the validation set will degrade [11].  
 
In order to determine the correct topology 50 NN 
architectures were examined using 1-5 and 1-10 nodes 
in the first and second hidden layers consecutively. Ten 
NN’s were trained for each topology with random initial 
weights to ensure reliable results. 

 
Table 3 shows the achieved MAPE for each network 
topology. Topology selection is based on two criteria:  
 
• Networks, which failed to reach a minimum MAPE 

over the validation data, are deemed to be too 
elementary.  

 
• A bias is shown towards networks with less 

complexity but similar validation MAPE’s.  
 
Using the first criteria networks with topologies of 1 
and 2 nodes in the either the first or second hidden layer 
are eliminated. Of the remaining networks topologies 
4x4, 5x7 and 4x9 achieved the minimum MAPE’s 
(Table 3). Topology 4x4 is chosen using the second 
criteria.  
 
24 NN’s with a topology of 4x4 are trained for each 
parallel series. Ten NN’s are again trained for each 
parallel series with random initial weights to ensure 
reliable results. 
 
 

6 RESULTS 
 
The MAPE as a function of the time of day (Figure 5) 
shows that the NN model achieves better results over 
the novelty set for most hours of the day.  
 

Figure 5 MAPE over the novelty set. 
 
Table 4 shows the overall average MAPE achieved 
using the BSM, the linear model and the NN model.  
 

Table 4 Average daily MAPE 

 
 

Table 3 Average validation MAPE for differing NN topologies (6pm series) 

(5)                     ... 10102211 cacacark +++=

Layer 2  : 1 2 3 4 5 6 7 8 9 10
Layer 1 : 1 1.42 1.43 1.60 1.68 1.65 1.62 1.69 1.73 1.81 1.83

2 1.90 1.92 1.53 1.55 1.56 1.58 1.52 1.54 1.77 1.64
3 1.44 1.47 1.53 1.48 1.50 1.50 1.51 1.60 1.59 1.68
4 1.42 1.49 1.48 1.45 1.50 1.48 1.63 1.48 1.43 1.51
5 1.47 1.46 1.48 1.52 1.53 1.47 1.44 1.47 1.62 1.53
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The NN model achieved the best results in all three data 
sets with an improvement of 0.2% over the linear model 
in the novelty data set. Both the linear and NN model 
show a significant improvement over the BSM.  
 
 

7 DISCUSSION 
 
The residual modelling approach allows the analysis of 
the linear AR and residual part of the data. The MAPE 
achieved utilising a NN model is superior to a linear 
model (Table 4). However the NN performance over the 
hours 11am-3pm is comparable to the linear model 
performance (Figure 5). The topology of the NN’s used 
assumes that the optimum topology for the 6pm series 
(i.e. 4x4) also applies to the series for these hours. Input 
selection (Section 3) also utilises only one input 
structure, based on the mode of the optimum number of 
components. The calculation of 24 individual input 
structures and network topologies should improve the 
performance and is proposed for each parallel model.  
 
Similar NN’s using the structure in Section 5 but 
without the inclusion of lagged residual inputs exhibit a 
near identical performance to the linear models. This 
suggests that the superior performance of the NN 
presented is due to the inclusion of the lagged residual 
elements in the NN input data. Examination of the 
residual for evidence of a non-linear AR relationship is 
proposed using techniques such as [12][13].  
 
 

8 CONCLUSION 
 
The purpose of this paper has been to compare linear 
and neural parallel models and determine which is 
superior. For the models and Irish data used the neural 
network models were found to give superior results.  
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