Projective modules and involutions

John Murray

Mathematics Department, National University of Ireland, Maynooth, Co. Kildare, Ireland

Received 30 March 2005

Communicated by Michel Broué

Abstract

Let G be a finite group, and let $\Omega := \{ t \in G \mid t^2 = 1 \}$. Then Ω is a G-set under conjugation. Let k be an algebraically closed field of characteristic 2. It is shown that each projective indecomposable summand of the G-permutation module $k\Omega$ is irreducible and self-dual, whence it belongs to a real 2-block of defect zero. This, together with the fact that each irreducible kG-module that belongs to a real 2-block of defect zero occurs with multiplicity 1 as a direct summand of $k\Omega$, establishes a bijection between the projective components of $k\Omega$ and the real 2-blocks of G of defect zero.

© 2005 Published by Elsevier Inc.

Keywords: Involutions; Blocks of defect zero; Green correspondence; Burry–Carlson–Puig theorem

Let G be a finite group, with identity element e, and let $\Omega := \{ t \in G \mid t^2 = e \}$. Then Ω is a G-set under conjugation. In this note we describe the projective components of the permutation module $k\Omega$, where k is an algebraically closed field of characteristic 2. By a projective component we mean an indecomposable direct summand of $k\Omega$ that is also a direct summand of a free kG-module. We show that all such components are irreducible, self-dual and occur with multiplicity 1.

This gives an alternative proof of Remark (2) on p. 254 of [5], and strengthens Corollaries 3 through 7 of that paper. In addition, we can give the following quick proof of Proposition 8 in [5]:

E-mail addresses: john.murray@nuim.ie, jmurray@maths.may.ie.

0021-8693/– see front matter © 2005 Published by Elsevier Inc.
doi:10.1016/j.jalgebra.2005.05.032
Corollary 1. Suppose that H is a strongly embedded subgroup of G. Then $k_H \uparrow^G \cong k_G \oplus \bigoplus_{i=1}^s P_i$ where $s \geq 0$ and the P_i are pairwise nonisomorphic self-dual projective irreducible k_G-modules.

Proof. That H is strongly embedded means that $|H|$ is even and $|H \cap H^g|$ is odd, for each $g \in G \setminus H$. Let $t \in H$ be an involution. Then clearly $C_G(t) \leq H$. So $k_H \uparrow^G$ is isomorphic to a submodule of $(k_{C_G(t)}) \uparrow^G$. Mackey’s theorem implies that every component of $k_H \uparrow^G$, other than k_G, is a projective k_G-module. Being projective, these modules must be components of $(k_{C_G(t)}) \uparrow^G$. The result now follows from Theorem 8.

Consider the wreath product $G \wr \Sigma$ of G with a cyclic group Σ of order 2. Here Σ is generated by an involution σ and $G \wr \Sigma$ is isomorphic to the semidirect product of the base group $G \times G$ by Σ. The conjugation action of σ on $G \times G$ is given by $(g_1, g_2)^\sigma = (g_2, g_1)$, for all $g_1, g_2 \in G$. The elements of $G \wr \Sigma$ will be written $(g_1, g_2), (g_1, g_2) \sigma$ or σ.

We shall exploit the fact that kG is an $k(G \times G)$-module via $x \cdot (g_1, g_2) := g_1^{-1}xg_2$, for each $x \in kG$, and $g_1, g_2 \in G$. The action of Σ on kG is induced by the permutation action of σ on the distinguished basis G of kG: $g^\sigma := g^{-1}$, for each $g \in G$. Clearly σ acts as an involutory k-algebra anti-automorphism of kG. If it follows that the actions of $G \times G$ and Σ on kG are compatible with the group relations in $G \wr \Sigma$.

By a block of kG, or a 2-block of G, we mean an indecomposable k-algebra direct summand of kG. Each block has associated to it a primitive idempotent in $Z(kG)$, a Brauer equivalence class of characters of irreducible kG-modules and a Brauer equivalence class, modulo 2, of ordinary irreducible characters of G. A block has defect zero if it is a simple k-algebra, and is real if it contains the complex conjugates of its ordinary irreducible characters. Theorem 8 establishes a bijection between the real 2-blocks of G that have defect zero and the projective components of kG.

We could equally well work over a complete discrete valuation ring R of characteristic 0, whose field of fractions F is algebraically closed, and whose residue field $R/J(R)$ is k. So we use O to indicate either of the commutative rings k or R.

All our modules are right-modules. We denote the trivial OG-module by O_G. If M is an OG-module, we use $M \downarrow_H$ to denote the restriction of M to H. If H is a subgroup of G and N is an OH-module, we use $N \uparrow^G_H$ to denote the induction of N to G. Whenever $g \in G$, we write g for $(g, g) \in G \times G$, and we set $X \uparrow := \{x \mid x \in X\}$, for each $X \subset G$. Other notation and concepts can be found in a standard textbook on modular representation theory, such as [1] or [4].

If B is a block of OG, then so too is $B^\sigma = \{x^\sigma \mid x \in B\}$. We call B a real block if $B = B^\sigma$. Our first result describes the components of OG as $OG \wr \Sigma$-module:

Theorem 2. There is an indecomposable decomposition of OG as $OG \wr \Sigma$-module:

$$OG = B_1 \oplus \cdots \oplus B_r \oplus (B_{r+1} + B_{r+1}^\sigma) \oplus \cdots \oplus (B_{r+s} + B_{r+s}^\sigma).$$

Here B_1, \ldots, B_r are the real 2-blocks and $B_{r+1}, B_{r+1}^\sigma, \ldots, B_{r+s}, B_{r+s}^\sigma$ are the nonreal 2-blocks of G.

Proof. By a suitable permutation of the basis vectors of a $kG \wr \Sigma$-module, we can provide a basis of OG that realises $OG \wr \Sigma$ as the wreath product of $kG \wr \Sigma$ by an appropriate Σ-module. The theorem now follows from the well-known fact that $kG \wr \Sigma$ is isomorphic to the semidirect product of the base $G \times G$ by Σ.

Theorem 3. Suppose that G is a group and σ is an involution of G.

Let $\Sigma = \{1, \sigma\}$, $G \wr \Sigma := G \times G$, and $A = kG \wr \Sigma$. Then A is an $OG \wr \Sigma$-module, and $OG \wr \Sigma$ is a $kG \wr \Sigma$-module.

If B is a $kG \wr \Sigma$-module, then B^σ is a $kG \wr \Sigma$-module too. We say that B is an σ-real $kG \wr \Sigma$-module if $B = B^\sigma$. The real σ-blocks are the indecomposable σ-real $kG \wr \Sigma$-modules. The nonreal σ-blocks are the indecomposable σ-nonreal $kG \wr \Sigma$-modules.

If B is a $kG \wr \Sigma$-module, then B^σ is a $kG \wr \Sigma$-module too. We say that B is an σ-real $kG \wr \Sigma$-module if $B = B^\sigma$. The real σ-blocks are the indecomposable σ-real $kG \wr \Sigma$-modules. The nonreal σ-blocks are the indecomposable σ-nonreal $kG \wr \Sigma$-modules.

If B is a $kG \wr \Sigma$-module, then B^σ is a $kG \wr \Sigma$-module too. We say that B is an σ-real $kG \wr \Sigma$-module if $B = B^\sigma$. The real σ-blocks are the indecomposable σ-real $kG \wr \Sigma$-modules. The nonreal σ-blocks are the indecomposable σ-nonreal $kG \wr \Sigma$-modules.

If B is a $kG \wr \Sigma$-module, then B^σ is a $kG \wr \Sigma$-module too. We say that B is an σ-real $kG \wr \Sigma$-module if $B = B^\sigma$. The real σ-blocks are the indecomposable σ-real $kG \wr \Sigma$-modules. The nonreal σ-blocks are the indecomposable σ-nonreal $kG \wr \Sigma$-modules.

If B is a $kG \wr \Sigma$-module, then B^σ is a $kG \wr \Sigma$-module too. We say that B is an σ-real $kG \wr \Sigma$-module if $B = B^\sigma$. The real σ-blocks are the indecomposable σ-real $kG \wr \Sigma$-modules. The nonreal σ-blocks are the indecomposable σ-nonreal $kG \wr \Sigma$-modules.
Proof. This follows from the well-known indecomposable decomposition of OG, as an $O(G \times G)$-module, into a direct sum of its blocks, and the fact that $B_i^\sigma = B_i$ for $i = 1, \ldots, r$, and $B_{r+j}^\sigma = B_{r+j}$ for $j = 1, \ldots, s$. □

An obvious but useful fact is that OG is a permutation module:

Lemma 3. The $OG \wr \Sigma$-module OG is isomorphic to the permutation module $(OG \times \Sigma)^{\wr G \wr \Sigma}$.

Proof. The elements of G form a $G \wr \Sigma$-invariant basis of OG. Moreover if $g_1, g_2 \in G$, then $g_2 = g_1 (g_1, g_2)$. So G is a transitive $G \wr \Sigma$-set. The stabilizer of $g \in OG$ in $G \wr \Sigma$ is $G \times \Sigma$. The lemma follows from these facts. □

Let C be a conjugacy class of G. Set $C^o := \{ c \in G \mid c^{-1} \in C \}$. Then C^o is also a conjugacy class of G, and $C \cup C^o$ can be regarded as an orbit of $G \times \Sigma$ on the $G \wr \Sigma$-set G. As such, the corresponding permutation module $O(C \cup C^o)$ is a $OG \times \Sigma$-direct summand of OG. If $C = C^o$, we call C a real class of G. In this case for each $c \in C$ there exists $x \in G$ such that $c^x = c^{-1}$. The point stabilizer of c in $G \times \Sigma$ is $CG(c)(\langle x \rangle \Sigma)$. So

$$OC \cong (OC_{G(c)}(\langle x \rangle \Sigma))^{\wr G \times \Sigma}. $$

If $C \neq C^o$, we call C a nonreal class of G. In this case the point stabilizer of $c \in C \cup C^o$ in $G \times \Sigma$ is $CG(c)$. So

$$OC(C \cup C^o) \cong (OC_{G(c)}(\langle x \rangle \Sigma))^{\wr G \times \Sigma}. $$

Suppose now that the real classes are C_1, \ldots, C_t and that the nonreal classes are $C_{t+1}, C_{t+1}^o, \ldots, C_{t+r}, C_{t+r}^o$. Then we have:

Lemma 4. There is a decomposition of OG as an $OG \times \Sigma$-permutation module:

$$OG = OC_1 \oplus \cdots \oplus OC_t \oplus OC_{t+1} \oplus C_{t+1}^o \oplus \cdots \oplus OC_{t+r} \oplus C_{t+r}^o \oplus OC_{t+r+1} \oplus C_{t+r+1}^o.$$

Proof. This follows from Lemma 3 and the discussion above. □

By a quasi-permutation module we mean a direct summand of a permutation module. Our next result is Lemma 9.7 of [1]. We include a proof for the convenience of the reader.

Lemma 5. Let M be an indecomposable quasi-permutation OG-module and suppose that H is a subgroup of G such that $M \downarrow H$ is indecomposable. Then there is a vertex V of M such that $V \cap H$ is a vertex of $M \downarrow H$. If H is a normal subgroup of G, then this is true for all vertices of M.

Proof. Let U be a vertex of M. As $O_{U \mid M \downarrow U}$ we have $O_{U \cap H \mid (M \downarrow H) \downarrow U \cap H}$. But $U \cap H$ is a vertex of $O_{U \cap H}$. So Mackey’s theorem implies that there exists a vertex W of $M \downarrow H$ such that $U \cap H \subseteq W$.

As $M \downarrow H$ is a component of the restriction of M to H, Mackey’s theorem shows that there exists $g \in G$ such that $W \subseteq U^g \cap H$. Now U^g is a vertex of M. So by the previous paragraph, and the uniqueness of vertices of $M \downarrow H$ up to H-conjugacy, there exists $h \in H$ such that $U^g \cap H = W^h$. Comparing cardinalities, we see that $W = U^g \cap H$. So $U^g \cap H$ is a vertex of $M \downarrow H$.

Suppose that H is a normal subgroup of G. Then $U \cap H \leq W$ and $W = U^g \cap H = (U \cap H)^g$ imply that $U \cap H = W$. □

R. Brauer showed how to associate to each block of OG a G-conjugacy class of 2-subgroups, its so-called defect groups. It is known that a block has defect zero if and only if its defect groups are all trivial. J.A. Green showed how to associate to each indecomposable OG-module a G-conjugacy class of 2-subgroups, its so-called vertices. He also showed how to identify the defect groups of a block using its vertices as an indecomposable $OG(\times G)$-module.

Corollary 6. Let B be a block of OG and let D be a defect group of B. If B is not real then D is a vertex of $B + B^o$, as $OG \times \Sigma$-module. If B is real, then there exists $x \in N_G(D)$, with $x^2 \in D$, such that $D(x\sigma)$ is a vertex of B, as $OG \times \Sigma$-module. In particular, Σ is a vertex of $B + B^o$ if and only if B is a real 2-block of G that has defect zero.

Proof. J.A. Green showed in [2] that D is a vertex of B, when B is regarded as an indecomposable $OG(\times G)$-module. Suppose first that B is not real. Then $B + B^o = (B \downarrow G \times G)(G)_{G \times \Sigma}$, for instance by Corollary 8.3 of [1]. It follows that $B + B^o$ has vertex D, as an indecomposable $OG \times \Sigma$-module.

Suppose then that $B = B + B^o$ is real. Lemma 3 shows that B is $G \times \Sigma$-projective. So we may choose a vertex V of B such that $V \subseteq G \times \Sigma$. Moreover, B is a quasi-permutation $OG \times \Sigma$-module, and its restriction to the normal subgroup $G \times G$ is indecomposable. Lemma 5 then implies that $V \cap (G \times G) = V \cap G$ is a vertex of $B \downarrow G \times G$. So by Green’s result, we may choose D so that $V \cap G = D$. Now $G \times G$ has index 2 in $G \times \Sigma$. So Green’s indecomposability theorem, and the fact that $B \downarrow G \times G$ is indecomposable, implies that $V \not\subseteq (G \times G)$. It follows that there exists $x \in N_G(D)$, with $x^2 \in D$, such that $V = D(x\sigma)$.

If B has defect zero, then $D = (e)$. So $x^2 = e$. In this case, $(x\sigma) = \Sigma(x^2)$ is $G \times \Sigma$-conjugate to Σ. So Σ is a vertex of B. Conversely, suppose that Σ is a vertex of $B + B^o$. The first paragraph shows that B is a real block of G. Moreover B has defect zero, as $\Sigma \cap G = (e)$. □

We quote the following result of Burry, Carlson and Puig [4, 4.4.6] on the Green correspondence:

Lemma 7. Let $V \leq H \leq G$ be such that V is a p-group and $N_G(V) \leq H$. Let f denote the Green correspondence with respect to (G, V, H). Suppose that M is an indecomposable OG-module such that $M \downarrow H$ has a component N with vertex V. Then V is a vertex of M and $N = f(M)$.
We can now prove our main result. Part (ii) is Remark (2) on p. 254 of [5], but our proof is independent of the proof given there.

Theorem 8.

(i) Let \(t \in G \), with \(t^2 = e \). Suppose that \(P \) is an indecomposable projective direct summand of \((\mathcal{O}_G(1))^+ \). Then \(P \) is irreducible and self-dual and occurs with multiplicity 1 as a component of \((\mathcal{O}_G(1))^+ \). In particular \(P \) belongs to a real 2-block of \(G \) that has defect zero.

(ii) Suppose that \(M \) is a projective indecomposable \(\mathcal{O}_G \)-module that belongs to a real 2-block of \(G \) that has defect zero. Then there exists \(s \in G \), with \(s^2 = e \), such that \(M \) is a component of \((\mathcal{O}_G(1))^+ \). Moreover, \(s \) is uniquely determined up to conjugacy in \(G \).

Proof. If \(t = e \) then \(P = \mathcal{O}_G \). So \(P \) is irreducible and self-dual. The assumption that \(P \) is projective and the fact that \(\dim_{\mathcal{O}_G}(P) = 1 \) implies that \(|G| \) is odd. So all blocks of \(\mathcal{O}_G \), in particular the one containing \(P \), have defect zero.

Now suppose that \(t \neq e \). Let \(T \) be the conjugacy class of \(G \) that contains \(t \). The permutation module \(\mathcal{O}T \) is a direct summand of the restriction of \(\mathcal{O}_G \) to \(G \times T \). Regard \(P \) as an \(\mathcal{O}_G \)-module. Let \(I(P) \) be the inflation of this module to \(G \times T \). Then \(I(P) \) is a component of \(\mathcal{O}T \). As \(T \) is contained in the kernel of \(I(P) \), and \(P \) is a projective \(\mathcal{O}_G \)-module, it follows that \(I(P) \) has vertex \(T \) as an indecomposable \(\mathcal{O}_G \times T \)-module.

By Lemma 2, and the Krull–Schmidt theorem, there exists a 2-block \(B \) of \(G \) such that \(I(P) \) is a component of the restriction \((B + B^\circ)^\uparrow_{G \times T} \). An easy computation shows that \(N_{G/T}(T) = G \times T \). It then follows from Lemma 7 that \((B + B^\circ) \) has vertex \(T \) and also that \(I(P) \) is the Green correspondent of \((B + B^\circ) \) with respect to \((G : T, \Sigma, G \times T) \). We conclude from Corollary 6 that \(B \) is a real 2-block of \(G \) that has defect zero.

Let \(\hat{B} \) be the 2-block of \(G : T \) that contains \(B \). Then \(\hat{B} \) is real and has defect group \(T \). Let \(\hat{A} \) be the Brauer correspondent of \(\hat{B} \). Then \(\hat{A} \) is a real 2-block of \(G \times T \) that has defect group \(T \). Now \(\hat{A} = \hat{A} \otimes \Omega \Sigma \), where \(\hat{A} \) is a real 2-block of \(\mathcal{O}_G \) that has defect zero. In particular \(\hat{A} \) has a unique indecomposable module, and this module is projective, irreducible and self-dual. Corollary 14.4 of [1] implies that \(I(P) \) belongs to \(\hat{A} \). So \(P \) belongs to \(\hat{A} \). We conclude that \(P \) is irreducible and self-dual and belongs to a real 2-block of \(G \) that has defect zero.

Now \(B \) occurs with multiplicity 1 as a component of \(\mathcal{O}_G \), and \(I(P) \) is the Green correspondent of \(B \) with respect to \((G : T, \Sigma, G \times T) \). So \(I(P) \) has multiplicity 1 as a component of the restriction \(\mathcal{O}_G(1) \) to \(G \times T \). It follows that \(P \) occurs with multiplicity 1 as a component of \((\mathcal{O}_G(1))^+ \), and with multiplicity 0 as a component of \((\mathcal{O}_G(1))^+ \), for \(r \in G \) with \(r^2 = e \), but not \(G \)-conjugate to \(t \). This completes the proof of part (i).

Let \(R \) be a real 2-block of \(G \) that has defect zero. Then \(R \) has vertex \(T \) as an indecomposable \(\mathcal{O}_G \times T \)-module. So its Green correspondent \(f(R) \), with respect to \((G : T, \Sigma, G \times T) \), is a component of the restriction of \(\mathcal{O}_G \) to \(G \times T \) that has vertex \(T \). Lemma 4 and the Krull–Schmidt theorem imply that \(f(R) \) is isomorphic to a component of \(\mathcal{O}(C \cup C^\circ) \), for some conjugacy class \(C \) of \(G \). Now \(\Sigma \) is a central subgroup of \(G \times T \). So \(\Sigma \) must be a subgroup of the point stabilizer of \(C \cup C^\circ \) in \(G \times T \). It follows that \(s^2 = e \), for each \(s \in C \).
Let N denote the restriction of $f(R)$ to \overline{G}, and consider N as an OG-module. We have just shown that N is a component of $(OC_{G}(s))^{G}$. Arguing as before, we see that N is an indecomposable projective OG-module that belongs to a real 2-block of G that has defect zero.

The last paragraph establishes an injective map between the real 2-blocks of G that have defect zero and certain projective components of $O\Omega$. As each block of defect zero contains a single irreducible OG-module, this map must be onto. It follows that the module M in the statement of the theorem is a component of some permutation module $(OC_{G}(s))^{G}$, where $s \in G$ and $s^2 = e$. The fact that s is determined up to G-conjugacy now follows from the last statement of the proof of part (i). This completes the proof of part (ii). \[\square \]

It is possible to simplify the above proof by showing that if B is a real 2-block of G that has defect zero, then its Green correspondent, with respect to $(G : \Sigma, \Sigma, G \times \Sigma)$ is M^{R}, where M^{R} is the Frobenius conjugate of the unique irreducible OG-module that belongs to B.

Suppose that R is a complete discrete valuation ring and that L is an $RC_{G}(t)$-module, where L has R-rank 1 and $O^{2}(C_{G}(t))$ acts trivially on L. Then the 2-modular reduction of L is the trivial $kC_{G}(t)$-module, although L is not necessarily the trivial $RC_{G}(t)$-module. Now each projective irreducible kG-module lifts to a projective irreducible RG-module. So the conclusions of part (i) of the above theorem apply to L^{G}; all of its projective components are irreducible and self-dual. We thank the referee for pointing out this extension of our result.

The proof of Theorem 8 hints at the fact that we have some 2-local control over all the components of $(OC_{G}(t))^{G}$. The investigation of special properties of such components is continued in [3].

Corollary 9. Let $\Omega = \{t \in G \mid t^2 = e\}$. Then there is a bijection between the real 2-blocks of G that have defect zero and the projective components of $O\Omega$.

Here is a sample application. It was suggested to me by G.R. Robinson.

Corollary 10. Let $n \geq 1$ and let t be an involution in the symmetric group Σ_n. If $n = m(m+1)/2$ is a triangular number, and t is a product of $\lfloor (m^2 + 1)/4 \rfloor$ commuting transpositions, then there is a single projective irreducible $O\Sigma_n$-module, and this module is the unique projective component of $(OC_{\Sigma_n}(t))^{\Sigma_n}$. For all other values of n or nonconjugate involutions t, the modules $(OC_{\Sigma_n}(t))^{\Sigma_n}$ are projective free.

Proof. We give a proof of the following result in [3, Corollary 8.4]: Let G be a finite group, let B be a real 2-block of G of defect zero, and let χ be the unique irreducible character in B. Then there exists a 2-regular conjugacy class C of G such that $C = C^0$, $|C_G(c)|$ is odd, for $c \in C$, and $\chi(c)$ is nonzero, modulo a prime ideal containing 2. Moreover, there exists an involution $t \in G$ such that $c^t = c^{-1}$, and for this t we have $(\chi_{C_G(t)}, 1_{C_G(t)}) = 1$.

The existence of t was shown in [5]. The identification of t using the class C was first shown by R. Gow (in unpublished work).
Suppose that \((O_{\Sigma_n(t)} \uparrow \Sigma_n)\) has a projective component. Then \(\Sigma_n\) has a 2-block of defect zero, by Theorem 8. The 2-blocks of \(\Sigma_n\) are indexed by triangular partitions \(\mu = \begin{bmatrix} m, m-1, \ldots, 2, 1 \end{bmatrix}\), where \(m\) ranges over those natural numbers for which \(n - m(m+1)/2\) is even. Moreover, the 2-block corresponding to \(\mu\) has defect zero if and only if \(n = m(m+1)/2\). In particular, we can assume that \(n = m(m+1)/2\), for some \(m \geq 1\).

Let \(B\) be the unique 2-block of \(\Sigma_n\) that has defect zero, let \(\chi\) be the unique irreducible character in \(B\) and let \(g \in \Sigma_n\) have cycle type \(\lambda = \begin{bmatrix} 2m-1, 2m-5, \ldots \end{bmatrix}\). Then \(|C_{\Sigma_n}(g)|\) is odd. As the parts of \(\lambda\) are the “diagonal hooklengths” of \(\mu\), the Murnaghan–Nakayama formula shows that \(\chi(g) = 1\). Now \(\lambda\) has \([(m-1)/2]\) nonzero parts. So \(g\) is inverted by an involution \(t\) that is a product of \((n - [(m-1)/2])\)/2 = \([m^2 + 1]/4\) commuting transpositions. It follows from Theorem 8 and the previous paragraph that the unique irreducible projective \(B\)-module occurs with multiplicity 1 as a component of \((O_{\Sigma_n(t)} \uparrow \Sigma_n)\). The last statement of the corollary now follows from Theorem 8. □

References