Huang, Kaidi
(2010)
On Wireless Local Area Networks.
PhD thesis, National University of Ireland Maynooth.
Abstract
Wireless Local Area Networks (WLANs) have been widely developed during this decade, due to their
mobility and
exibility. During this period, IEEE 802.11 has become the dominant WLAN protocol.
This thesis reports on research into WLANs, especially IEEE 802.11 networks. Since IEEE 802.11
denes rules at the MAC and Physical (PHY) layers, which are introduced in Chapter 1, the rst
part (Chapters 2, 3 and 4) of this thesis deals with analytical models for the Distributed Coordination
Function (DCF) of the IEEE 802.11 MAC, while the second part (Chapters 5 and 6) focuses on the
transmission rates provided by the IEEE 802.11 PHY layer.
Analytical models are widely adopted in research into WLANs, especially IEEE 802.11 networks.
Despite dierences in details of published analytical models, most of them share common hypotheses.
To ensure condence in the predictions made by the analytical models that are based on these common
hypotheses, Chapter 2 identies these common hypotheses, and investigates them. By statistically
analyzing simulationbased and experimental data, we found the appropriateness of these fundamental
hypotheses only exists under some specic limitations.
One of the common hypotheses investigated in Chapter 2 is the assumption that the conditional
collision probability is constant and independent of the transmission history that is revealed by the
backo stage (the collisiondecoupling assumption). Chapter 3 analyzes the relationship between
the conditional collision probability and the backo stage, by building an explorative analytical
model without the commonly adopted collisiondecoupling assumptions. Thus, Chapter 3 provides an
analytical way to the understanding of the collisiondecoupling assumption.
Another common hypothesis investigated in Chapter 2 is the assumption that the probability
of having a nonempty queue after each packet transmission is constant and independent of the
transmission history (the queuedecoupling assumption). Although this queuedecoupling assumption
is demonstrated to be incorrect in Chapter 2, the analytical models based on this assumption continue
to make accurate predictions as reported in some papers [43][45]. To explain this paradox, in Chapter
4, we compare the predictive quantities from models with or without the queuedecoupling assumption.
As we found, both models give similar and accurate predictions when the clients in the wireless network
are symmetrically loaded. However, when these clients are asymmetrically loaded, the model with the
queuedecoupling assumption starts to make errors, while the other model still gives the right answer.
Therefore, Chapter 4 proves that the gap between reality and the queuedecoupling assumption can
cause errors in model predictions.
At the PHY layer, the IEEE 802.11 a/b/g WLAN protocolsuite provides a range of transmission
rates determined by distinct physical layer modulation and Forward Error Correction schemes. Based
on current channel conditions, a rate control algorithm at each station tries to select the right rate
that gives the highest throughput. In the design of the rate control algorithm, it is commonly assumed
that higher transmission rates suer more from interference from the noise in any channel conditions
(the robustnesstonoise assumption). In Chapter 5, we investigated this assumption with theoretical
calculations and experimental measurements. In our observations, there exist some redundant rates
that exhibits less robust to the noise than the higher rates. Thus, Chapter 5 identies those redundant
rates, and provides a new rate pool that obeys the robustnesstonoise assumptions on the rate control
algorithm design.
Finally, based on the new rate pool provided by Chapter 5, in Chapter 6, we present `HRCA',
a highly adaptive and collisionaware rate control algorithm. It is designed to minimize the average
time each packet spends on the medium including MAC retries, in a fully decentralized fashion with
no message exchange. In experiments, HRCA outperforms both AMRR and SampleRate, which are
wellknown in the rate control community, in single and multiclient (collisions) scenarios, by providing
a higher and more stable throughput.
Repository Staff Only(login required)

Item control page 