Bracken, Carl and Zha, Zhengbang
(2009)
On the Fourier Spectra of the Infinite Families
of Quadratic APN Functions.
Advances in Mathematics of Communications , 3 (3).
pp. 219226.
ISSN 19305346
Abstract
It is well known that a quadratic function defined on a finite field of odd degree is almost bent (AB) if and only if it is almost perfect nonlinear (APN). For the even degree case there is no apparent relationship between the values in the Fourier spectrum of a function and the APN property. In this article we compute the Fourier spectrum of the new quadranomial family of APN functions. With this result, all known infinite families of APN functions now have their Fourier spectra and hence their nonlinearities computed.
Item Type: 
Article

Keywords: 
Fourier spectrum; APN function; nonlinearity; Infinite Families; 
Subjects: 
Science & Engineering > Mathematics & Statistics 
Item ID: 
2695 
Identification Number: 
10.3934/amc.2009.3.219 
Depositing User: 
IR Editor

Date Deposited: 
06 Sep 2011 14:44 
Journal or Publication Title: 
Advances in Mathematics of Communications 
Publisher: 
American Institute of Mathematical Sciences (AIMS) 
Refereed: 
No 
URI: 

Repository Staff Only(login required)

Item control page 