Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica

French, W.J.R. and Mulligan, F.J. (2010) Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica. Atmospheric Chemistry and Physics, 10. pp. 11439-11446. ISSN 1680-7316

[img] Download (539kB)

Share your research

Twitter Facebook LinkedIn GooglePlus Email more...

Add this article to your Mendeley library


Temperature profiles from two satellite instruments – TIMED/SABER and Aura/MLS – have been used to calculate hydroxyl-layer equivalent temperatures for comparison with values measured from OH(6-2) emission lines observed by a ground-based spectrometer located at Davis Station, Antarctica (68 S, 78 E). The profile selection criteria – miss-distance <500 km from the ground station and solar zenith angles >97 – yielded a total of 2359 SABER profiles over 8 years (2002–2009) and 7407 MLS profiles over 5.5 years (2004–2009). The availability of simultaneous OH volume emission rate (VER) profiles from the SABER (OH-B channel) enabled an assessment of the impact of several different weighting functions in the calculation of OHequivalent temperatures. The maximum difference between all derived hydroxyl layer equivalent temperatures was less than 3 K. Restricting the miss-distance and miss-time criteria showed little effect on the bias, suggesting that the OH layer is relatively uniform over the spatial and temporal scales considered. However, a significant trend was found in the bias between SABER and Davis OH of 0.7 K/year over the 8- year period with SABER becoming warmer compared with the Davis OH temperatures. In contrast, Aura/MLS exhibited a cold bias of 9.9±0.4K compared with Davis OH, but importantly, the bias remained constant over the 2004– 2009 year period examined. The difference in bias behaviour of the two satellites has significant implications for multiannual and long-term studies using their data.

Item Type: Article
Additional Information: © Author(s) 2010. Creative Commons Attribution 3.0 License. Acknowledgements: The authors gratefully acknowledge the assistance of the Optical Physicists at Davis in collecting the hydroxyl airglow data. This work is supported by the Australian Antarctic science advisory committee. We thank the TIMED/SABER and Aura/MLS science teams for providing data used in this study. We also kindly thank two anonymous referees for insightful comment and helpful suggestions on this manuscript.
Keywords: Stability; temperatures; TIMED/SABER; Aura/MLS; OH(6-2) temperatures; Davis Station; Antarctica;
Academic Unit: Faculty of Science and Engineering > Experimental Physics
Item ID: 2698
Identification Number: 10.5194/acp-10-11439-2010
Depositing User: Dr. Frank Mulligan
Date Deposited: 08 Sep 2011 08:15
Journal or Publication Title: Atmospheric Chemistry and Physics
Publisher: Copernicus Publications for European Geosciences Union (EGU)
Refereed: Yes

Repository Staff Only(login required)

View Item Item control page

Document Downloads

More statistics for this item...