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Abstract

A number of methods have been proposed in the literature for the encryption of two-dimensional image information

using optical systems based on the fractional Fourier transform (FRT). We present an image encryption technique,

which is based on a recently proposed method of phase retrieval using the FRT. The optical implementation of the

method is mentioned and digital simulations are presented. The technique is shown to be a powerful method of digital

data and image encryption. In this paper, we outline the implementation of the algorithm and examine the sensitivities

of the various encryption keys. We also compare the performance of the new technique to digital implementations of

other FRT-based optical encryption schemes.
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1. Introduction

The Fractional Fourier Transform (FRT) is a generalisation of the Fourier Transform (FT), which has

received much attention in the literature [1–5]. The FT is a linear transformation, which allows a signal,

originally captured in the position domain to be rotated through 90� into the orthogonal spatial frequency

domain. Thus, four successive applications of the FT (360�) are equivalent to the identity operation. In an

analogous way, the FRT can be seen as a linear transformation [2,3,6], which rotates the signal through any

arbitrary angle into a mixed frequency – space domain. Optical implementations of the FRT using bulk
optical elements have been developed [6,7]. The resulting system complexity is no more than that of the
* Corresponding author. Tel.: +353-1-716-1927; fax: +353-1-283-0921.

E-mail address: john.sheridan@ucd.ie (J.T. Sheridan).

URL: http://www.ucd.ie/eleceng.

0030-4018/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.optcom.2003.08.030

mail to: john.sheridan@ucd.ie
http://www.ucd.ie/eleceng


62 B. Hennelly, J.T. Sheridan / Optics Communications 226 (2003) 61–80
optical Fourier transform as it can be implemented with one or two lenses. The numerical implementation

is not quite as straightforward and the optimum form of the discrete fractional Fourier transform (DFRT)

has been the subject of debate in the literature [8,9].

Information security has been receiving increasing attention in recent years. Because optical systems have

the distinct advantage of processing two-dimensional (2D) complex data in parallel, thus carrying out

otherwise relatively slow operations at great speeds, they are of growing interest for data encryption. A
recently proposed FT-based optical encryption scheme [10] dubbed ‘‘double random phase encoding’’ in-

volves multiplying by two random phases in the input and in the Fourier plane. If the random phases are

statistically independent white noises then the encrypted image is also a white noise signal. The random

phase key in the Fourier plane serves as the only key in this encryption scheme. The extra degrees of freedom

available when using the FRT have been utilised as new keys in several recent encryption schemes [11–21].

One possible definition of the DFRT [8] has a correlation property which has been used to derive a

recursive algorithm for the phase retrieval of a signal provided we have available the intensities of two

fractional Fourier transforms of the original signal [22]. However, this 1D algorithm cannot be simply
extended to include a second dimension, as significant non-trivial differences occur in going from 1D to 2D.

In this paper, we extend this algorithm to two dimensions and we use it to encrypt a standard image. We

also point out difficulties that arise starting with the original 1D phase retrieval algorithm [22]. We show

that through the use of two random phase keys and the intensities of our image we can obtain a highly

encrypted image. Decryption is in the form of 2D phase retrieval. Many of FRT encryption algorithms also

employ the use of one or more random phase keys [11–21]. Random phase keys can also be used with other

optically implemented transforms to encrypt data [24].

The outline of this paper is as follows: in Section 2, we briefly recall the continuousFRTand in Section 3,we
describe its discrete counterpart and present some of its properties. In Section 4, we discuss the phase retrieval

algorithm and its application to encryption. In Section 5, we present results for our algorithm and show the

sensitivities of the various keys. We compare the sensitivities of these keys to those of recent encryption al-

gorithms. In Section 6, we present our conclusions and in Appendices A and B, we describe the correlation

property proof andwhy the phase retrieval algorithm does not break downwhen extended to two dimensions.
2. Fractional Fourier transform

Conventionally, the ath order FRT, faðxaÞ, of a function f0ðx0Þ is calculated using integral transform

kernel given by [3,4]
Kaðx; xaÞ ¼
A/ exp jpðx2 cot/� 2xxa þ x2a cot/Þ

� �
; 0 < jaj < 2;

dðx� xaÞ; a ¼ 0;
dðxþ xaÞ; a ¼ �2;

8<
: ð1Þ
where
A/ ¼ exp½�jp sgnðsin/Þ=4þ j/=2� and / ¼ ap=2 ð2Þ

and x and xa represent the coordinate systems for the input or zeroth order domain and output ath frac-

tional domain, respectively. The FRT is linear and has the property that it is index additive,
Fa Fb f ðxÞf gf g ¼ Faþbff ðxÞg: ð3Þ

It is possible to extend the definition of the FRT order beyond �2
Fa f ðxÞf g ¼ Faþ4nff ðxÞg 8n ¼ integer: ð4Þ

In image encryption, we will of course be dealing with two-dimensional signals. The 2D FRT has

separable kernels in both dimensions and so the above definition can be naturally extended [6].
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3. The discrete fractional Fourier transform

Numerical implementation of the fractional Fourier transform has been the subject of much discussion

[8,9]. Arguably the most plausible definition of the DFRT to date is outlined in [9] but this definition has

not been implemented as a fast algorithm. Another definition which does not appear to satisfy all of the
requirements for the discrete definition [9], but which is an effective method of computing the continuous

FRT, will be used in this paper. It is defined by sampling the kernel of the FRT at appropriate sampling

intervals [23]. In [8] a fast algorithm to calculate this definition of the DFRT is presented. However, this

method requires a slightly different sampling criterion, which causes it to be non-unitary, and thus cannot

be used in the following analysis.

Here, the 2D DFRT is defined as follows:
fpx;py ðmxDxpx ;myDypy ; Þ

¼ F px;py f0;0ðlxDx0; lyDy0Þ
� �

ðmxDxpx ;myDypy Þ

¼ ApxApyDx0Dy0
XNy2 �1

ly¼
�Ny
2

XNx2 �1

lx¼�Nx
2

f0;0ðlxDx0; lyDy0Þ exp jpcot
pxp
2

� �
ðlxDx0Þ2
h��

þ ðmxDxpxÞ
2
i
� j2p

lxmx

Nx

�

� exp jpcot
pyp
2

� �
ðlxDy0Þ2
h�

þ ðmyDypy Þ
2
i
� j2p

lymy

Ny

��
; ð5Þ
where f0;0ðlxDx0; lyDy0Þ is the discrete function which we transform, and the integers lx and ly have the

following ranges
�Nx

2
6 lx 6

Nx

2
� 1 and � Ny

2
6 ly 6

Ny

2
� 1: ð6Þ
Dx0 and Dy0 are the sampling intervals of our input function in the x- and y-directions, respectively, Dxpx and
Dypy are the sampling intervals in the new FRT domain. They are defined below in Eq. (8). Both mx and my

have the same range of values as lx and ly .
The original representation can be retrieved from the pth order FRT using the inverse relationship
f0;0 nxDx0; nyDy0
	 

¼ F �px;�py fpx;py mxDxpx ;myDypy

	 
� �
ðnxDx0; nyDy0Þ

¼ A�pxA�pyDxpxDypy
XNy2 �1

my¼
�Ny
2

XNx2 �1

mx¼�Nx
2

fpx;py mxDxpx ;myDypy
	 


exp
n�
� jpcot

pxp
2

� �
ðnxDx0Þ2
h

þ ðmxDxpxÞ
2
io

� exp j2p
nxmx

Nx

� �
exp

n
� jpcot

pyp
2

� �
nyDy0
	 
2h

þ myDypy
	 
2io

exp j2p
nymy

Ny

� ��
: ð7Þ
From digital signal theory [23] we can determine the following sampling criteria,
Dxpx ¼
sin pxp

2

	 

NxDx0

; Dypy ¼
sin

pyp
2

	 

NyDy0

: ð8Þ
Then, using the above as our discrete model of the FRT, the following correlation property can be
defined
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XNy2 �1

ly¼�N
2

XNy2 �1

lx¼�N
2

f �
0;0ðlxDx0; lyDy0Þf0;0½ðlx

2
64 þ kxÞDx0; ðly þ kyÞDy0� exp j2pcot

pxp
2

� �
lxkxðDx0Þ2

n o

� exp j2pcot
pyp
2

� �
lykyðDy0Þ2

n o
¼

sin pxp
2

	 
�� ��
NxDx20

sin
pyp
2

	 
�� ��
NyDy20

� exp jpcot
pxp
2

� �
k2x ðDx0Þ

2
n o

exp jpcot
pyp
2

� �
k2y ðDy0Þ

2
n o

�
XNy2 �1

my¼
�Ny
2

XNx2 �1

mx¼�Nx
2

fpx;py ðmxDxpx ;myDypy Þ
�� ��2 exp j2p

kymy

Ny

� �
exp j2p

kymy

Ny

� �3
75: ð9Þ
We offer a proof of this property in Appendix A.

We now make use of this correlation property in an analogous way to that done in [22].
4. Encryption/decryption algorithms

In this section, we define our encryption and decryption procedures. Encryption is carried out using

two random phase keys and two FRT operations of arbitrary order. We apply one of the phase planes

followed by one of the FRT operations to our input image signal and store only the intensity of the result.

We repeat this procedure on our input image signal using the second phase key and applying a second
FRT operation. We note that both of these FRT operations may have different orders in the two or-

thogonal dimensions. In order to decrypt our image, we must know both phase keys and the orders of the

two FRT operations, comprising of a total of four FRT order keys (if we take the orders to be different in

the x and y-directions). Decryption is based on a correlation property of the FRT that allows us to

recursively recover our image.
4.1. Encryption

We begin with our signal to be encrypted g0;0ðlxDx0; lyDy0Þ. We note that this signal can be complex,

containing both intensity and phase information. Therefore, it can contain the information of two images

where the intensity of the signal can represent one image and the phase of our signal can be modulated to

represent a second image.

We intend to encrypt this data using two FRTs and two random phase keys in the form of two sta-

tistically independent white sequences expfj/ðlxDx0; lyDy0Þg and expfjuðlxDx0; lyDy0Þg, where /ðlxDx0;
lyDy0Þ and uðlxDx0; lyDy0Þ are uniformly distributed in ½0; 2p�. The keys necessary to decrypt the signal will

be the two random phase keys and the two sets of fractional orders, in both x and y used during the en-
cryption process adding four more encryption keys and giving us a total of six keys.

To encrypt our image, we carry out the following. We multiply our input signal by the first random

phase to give us
f 10;0ðlxDx0; lyDy0Þ ¼ g0;0ðlxDx0; lyDy0Þ expfj/ðlxDx0; lyDy0Þg: ð10Þ

Applying a DFRT operation of order px in the x-direction and py in the y-direction to this result

gives,
f 1px;py ðmxDxpx ;myDypy Þ ¼ F px;py g0;0ðlxDx0; lyDy0Þ expfj/ðlxDx0; lyDy0Þg
� �

: ð11Þ
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We store only the intensity of this signal jf 1px ;py ðmxDxpx ;myDypy Þj
2
to give us half of our required en-

crypted data. We note that lx and ly have values in the range given by Eq. (6). However, the decryption

procedure which will be described shortly requires that this intensity has twice as many samples in each

dimension
Dxpx ¼
sin pxp

2

	 

2NxDx0

; Dypy ¼
sin

pyp
2

	 

2NyDy0

; ð12Þ
where mx and my have the following ranges of values
�Nx 6mx 6Nx � 1 and � Ny 6my 6Ny � 1: ð13Þ

In other words, we require our transformed function to be sampled at double the rate necessary to

describe our input function completely. We can obtain this interpolated function from our input function

f 10;0ðlxDx0; lyDy0Þ by zero padding f 10;0ðlxDx0; lyDy0Þ so that we extend the range of lx and ly to
�Nx 6 lx 6Nx � 1 and � Ny 6 ly 6Ny � 1 ð14Þ

including zeros for the function values in the ranges
�Nx 6 lx 6 � Nx

2
� 1;

Nx

2
6 lx 6Nx � 1
and
�Ny 6 ly 6 � Ny

2
� 1;

Ny

2
6 ly 6Ny � 1: ð15Þ
We then carry out our FRT operations on this padded input function:
f 1px;py ðmx2Dxpx ;my2Dypy Þ ¼ ApxApyDx0Dy0
XNy2 �1

ly¼
�Ny
2

XNx2 �1

lx¼�Nx
2

f 10;0ðlxDx0; lyDy0Þ
�

� exp jpcot
pxp
2

� �
ðlxDx0Þ2
hn

þ mx2Dxpx
	 
2io

exp

�
� j2p

lxmx

Nx

�

� exp jpcot
pyp
2

� �
ðlyDy0Þ2
hn

þ my2Dypy
	 
2io

exp

�
� j2p

lymy

Ny

��
: ð16Þ
If we take f 10;0ðlxDx0; lyDy0Þ to have zero values in the ranges given by (15) we can write
f 1px;py ðmxDxpx ;myDypy Þ ¼ ApxApyDx0Dy0
XNy�1

ly¼Ny

XNx�1

lx¼Nx

f 10;0ðlxDx0; lyDy0Þ
�

� exp jpcot
pxp
2

� �
ðlxDx0Þ2
hn

þ mxDxpx
	 
2io

exp

�
� j2p

lxmx

Nx

�

� exp jpcot
pyp
2

� �
ðlyDy0Þ2
hn

þ myDypy
	 
2io

exp

�
� j2p

lymy

Ny

��
: ð17Þ
To obtain the second half of our encrypted data, we carry out a similar procedure, this time applying the

second random phase in a different fractional domain. We multiply our input signal by the second random

phase to give us
f 20;0ðlxDx0; lyDy0Þ ¼ g0;0ðlxDx0; lyDy0Þ exp juðlxDx0; lyDy0Þ
� �

ð18Þ
and carry out a DFRT operation of order qx in the x-direction and qy in the y-direction. This gives,
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f 2qx;qy ðmxDxqx ;myDyqy Þ ¼ F qx;qy g0;0ðlxDx0; lyDy0Þ exp juðlxDx0; lyDy0Þ
� �� �

: ð19Þ
Once again we capture only the intensity of this signal f 2qx;qy ðmxDxqx ;myDyqy Þ
�� ��2 � f 2qx;qy ðmxDxqx ;myDyqy Þ

is then defined in an identical manner to f 1px;py ðmxDxpx ;myDypy Þ using:
f 2qx;qy mxDxqx ;myDyqy
	 


¼ AqxAqyDx0Dy0
XNy�1

ly¼Ny

XNx�1

lx¼Nx

f 10;0ðlxDx0; lyDy0Þ
�

� exp jpcot
qxp
2

� �
ðlxDx0Þ2
hn

þ mxDxqx
	 
2io

� exp

�
� j2p

lxmx

Nx

�
exp jpcot

qyp
2

� �
ðlyDy0Þ2
hn

þ myDyqy
	 
2io

� exp

�
� j2p

lymy

Ny

��
: ð20Þ
We represent this encryption scheme using a block diagram flowchart in Fig. 1.

We note that if the procedure were to be carried out optically, the random phase planes might be

implemented using Spatial Light Modulators [21], the FRT operations would be implemented using free

space and lenses [7], and we could use a CCD camera to capture the intensity of the resultant wave

fields.
4.2. Decryption

We wish to recover our original signal (phase and intensity) from the two intensities generated above.

We will make use of the correlation property given in Eq. (9). We apply this property to both of the in-

tensities. In this way, we can derive a recursive algorithm to determine each value of our original signal.

Thus we can recover the original signals phase and amplitude.

Noting that f 10;0ðlxDx0; lyDy0Þ and f 20;0ðlxDx0; lyDy0Þ have both been padded with zero values outside

the range of interest and using the correlation property listed above we can now define the following two

functions:
Fig. 1. The encryption procedure.



B. Hennelly, J.T. Sheridan / Optics Communications 226 (2003) 61–80 67
RHS1ðkx; kyÞ ¼
XNy

2
�kx�1

ly¼�Ny

XNy
2
�ky�1

lx¼�Nx

f 1�0;0ðlxDx0; lyDy0Þf 10;0 lxð
�h

þ kxÞDx0; ly
	

þ ky


Dy0


� exp j2pcot

pxp
2

� �
lxkxðDx0Þ2

n o
exp j2pcot

pyp
2

� �
lykyðDy0Þ2

n oi

¼
sin pxp

2

	 
�� ��
2NxDx20

sin
pyp
2

� ���� ���
2NyDy20

exp jpcot
pxp
2

� �
k2x ðDx0Þ

2

� �
exp jpcot

pyp
2

� �
k2y ðDy0Þ

2

� �

�
XNy�1

my¼�Ny

XNx�1

mx¼�Nx

f 1px;py mxDxpx ;myDypy
	 
�� ��2 exp j2p

kxmx

Nx

� �
exp j2p

kxmy

Ny

� �
;

RHS2ðkx; kyÞ ¼
XNy

2
�kx�1

ly¼�Ny

XNy
2
�ky�1

lx¼�Nx

f 2�0;0ðlxDx0; lyDy0Þf 20;0 lxð þ kxÞDx0; ly
	

þ ky


Dy0

� "

� exp j2pcot
qxp
2

� �
lxkxðDx0Þ2

n o
exp j2pcot

qyp
2

� �
nykyðDy0Þ2

n o

¼
sin qxp

2

	 
�� ��
2NxDx20

sin
qyp
2

	 
�� ��
2NyDy20

exp jpcot
qxp
2

� �
k2x ðDx0Þ

2
n o

exp jpcot
qyp
2

� �
k2y ðDy0Þ

2
n o

�
XNy�1

my¼�Ny

XNx�1

mx¼�Nx

f 2qx;qy mxDxqx ;myDyqy
	 
�� ��2 exp j2p

kxmx

Nx

� �
exp j2p

kxmy

Ny

� �#
:

ð21Þ

We note that
f 20;0ðlxDx0; lyDy0Þ ¼ f 10;0ðlxDx0; lyDy0Þ exp jc lxDx0; lyDy0
	 
� �

; ð22Þ
where
c lxDx0; lyDy0
	 


¼ u lxDx0; lyDy0
	 


� / lxDx0; lyDy0
	 


: ð23Þ
Introducing the integer variable hx and hy where
hx ¼ Nx � kx ) kx ¼ Nx � hx;

hy ¼ Ny � ky ) ky ¼ Ny � hy ð24Þ
we can now write the above Eqs. (20) and (21) with these substitutions
RHS1ðNx� hx;Ny � hyÞ ¼
X�Ny
2
þhy�1ð Þ

ly¼�Ny

X�Nx
2
þhx�1ð Þ

lx¼�Nx

f 1�0;0 lxDx0; lyDy0
	 


f 10;0
h

� lxð
�

þNx � hxÞDx0; ly
	

þNy � hy


Dy0


exp j2pcot

pxp
2

� �
lxðNx

n
� hxÞðDx0Þ2

o
� exp j2pcot

pyp
� �

lyðNy

n
� hyÞðDy0Þ2

oi
ð25Þ
2
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and
RHS2ðNx � hx;Ny � hyÞ ¼
X�Ny
2
þhy�1ð Þ

ly¼�Ny

X�Nx
2
þhx�1ð Þ

lx¼�Nx

f 1�0;0 lxDx0; lyDy0
	 
h

� exp
�
� jc lxDx0; lyDy0

	 
�
f 10;0 ðlx

�
þ Nx � hxÞDx0; ly

	
þ Ny � hy



Dy0


� exp jc ðlx

��
þ Nx � hxÞDx0; ly

	
þ Ny � hy



Dy0

�
� exp j2pcot

qxp
2

� �
lxðNx � hxÞðDx0Þ2

n o
exp j2pcot

qyp
2

� �
ly

n
� Ny

	
� hy



ðDy0Þ2

oi
: ð26Þ
We will use Eqs. (25) and (26) to find two sets of products of the type
f 1�0;0
�Nx

2

� �
Dx0;

�Nx

2

� �
Dy0

� �
f 10;0

Nx

2

��
� hx

�
Dx0;

Ny

2

�
� hy

�
Dy0

�
;

f 1�0;0
�Nx

2

��
þ hx � 1

�
Dx0;

�Nx

2

�
þ hy � 1

�
Dy0

�
f 10;0

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 1

�
Dy0

�
;

where hx takes the values range 16 hx 6 Nx
2
þ 1and similarly we hy takes the value range from

16 hy 6
Ny

2
þ 1. We will examine the cases ðhx ¼ 1; hy ¼ 1Þ, ðhx ¼ 1; hy ¼ 2Þ, and ðhx ¼ 2; hy ¼ 1Þ separately

and then define a more general recursive formula for all other values of hx and hy .
Examining Eq. (25) and taking ðhx ¼ 1; hy ¼ 1Þ, we see that
f 1�0;0
�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 1

�
Dy0

�

¼ RHS1ðNx � 1;Ny � 1Þ exp j2pcot
pxp
2

� � Nx

2

� �
ðNx

�
� 1ÞðDx0Þ2

�

� exp j2pcot
pyp
2

� � Ny

2

� �
Ny

	�
� 1



ðDy0Þ2

�
: ð27Þ
Eq. (26) provides us with a similar result
f 1�0;0
�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 1

�
Dy0

�

¼ RHS2ðNx � 1;Ny � 1Þ exp j2pcot
pxp
2

� � Nx

2

� �
ðNx

�
� 1ÞðDx0Þ2

�

� exp j2pcot
pyp
2

� � Ny

2

� �
Ny

	�
� 1



ðDy0Þ2

�
exp jc

�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �� �

� exp

�
� jc

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 1

�
Dy0

��
; ð28Þ

aðhx; hyÞ ¼ exp
n
� jpcot

pxp
2

� �
NxðNx � hxÞðDx0Þ2

o
exp

n
� jpcot

pyp
2

� �
Ny Ny

	
� hy



ðDy0Þ2

o
; ð29Þ

bðhx; hyÞ ¼ exp
n
� jpcot

pxp
2

� �
ðNx � 2hx þ 2ÞðNx � hxÞðDx0Þ2

o
� exp

n
� jpcot

pyp
2

� �
ðNy � 2hy þ 2Þ Ny

	
� hy



ðDy0Þ2

o
; ð30Þ
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cðhx; hyÞ ¼ exp
n
� jpcot

qxp
2

� �
NxðNx � hxÞðDx0Þ2

o
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n
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� ��
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Nx

2

���
� hx

�
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Ny

2

�
� hy

�
Dy0

��
;

ð31Þ

dðhx; hyÞ ¼ exp
n
� jpcot

qxp
2

� �
ðNx � 2hx þ 2ÞðNx � hxÞðDx0Þ2

o
exp

n
� jpcot

qyp
2

� �
� ðNy � 2hy þ 2Þ Ny

	
� hy
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o
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�
� jc

�Nx

2
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�Ny

2

�
þ hy � 1

�
Dy0

��
exp jc

Nx

2

���
� 1

�
Dx0;

Ny

2

�
� 1

�
Dy0

��
; ð32Þ

Dðhx; hyÞ ¼ aðhx; hyÞdðhx; hyÞ � bðhx; hyÞcðhx; hyÞ: ð33Þ
Using these variables ðhx ¼ 2; hy ¼ 1Þ in Eqs. (25) and (26), we see that
f 1�0;0
�Ny

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

Nx

2

��
� 2

�
Dx0;

Ny

2

�
� 1

�
Dy0

�

¼
RHS1 Nx � 2;Ny � 1

	 

dð2; 1Þ �RHS2 Nx � 2;Ny � 1

	 

bð2; 1Þ

Dð2; 1Þ ð34Þ
and
f 1�0;0
�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

Nx

2

��
� 2

�
Dx0;

Ny

2

�
� 1

�
Dy0

�

¼
RHS2 Nx � 2;Ny � 1

	 

að2; 1Þ �RHS1 Nx � 2;Ny � 1

	 

cð2; 1Þ

Dð2; 1Þ : ð35Þ
Similarly taking ðhx ¼ 1; hy ¼ 2Þ in Eqs. (25) and (26) we see that
f 1�0;0
�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 2

�
Dy0

�

¼
RHS1 Nx � 1;Ny � 2

	 

dð1; 2Þ �RHS2 Nx � 1;Ny � 2

	 

bð1; 2Þ

Dð1; 2Þ ð36Þ
and
f 1�0;0
�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 2

�
Dy0

�

¼ RHS2ðNx � 1;Ny � 2Það1; 2Þ �RHS1ðNx � 1;Ny � 2Þcð1; 2Þ
Dð1; 2Þ : ð37Þ
We can write a general set of expressions for all the remaining values of hx and hy ; where 16 hx 6 Nx
2
þ 1

and 16 hy 6
Ny

2
þ 1
f 1�0;0
�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

Nx

2

��
� hx

�
Dx0;

Ny

2

�
� hy

�
Dy0

�

¼ T ðhx; hyÞdðhx; hyÞ � Sðhx; hyÞbðhx; hyÞ
Dðhx; hyÞ

ð38Þ



70 B. Hennelly, J.T. Sheridan / Optics Communications 226 (2003) 61–80
and
f 1�0;0
�Nx

2

��
þ hx � 1

�
Dx0;

�Ny

2

�
þ hy � 1

�
Dy0

�
f 10;0

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 1

�
Dy0

�

¼ T ðhx; hyÞdðhx; hyÞ � Sðhx; hyÞbðhx; hyÞ
Dðhx; hyÞ

; ð39Þ
where T ðhx; hyÞ and Sðhx; hyÞ are defined as
T ðhx; hyÞ ¼ RHS1ðNx � hx;Ny � hyÞ

�
X�Ny
2
þhy�1ð Þ

ny¼�Ny
2

X�Nx
2
þhx�1ð Þ

nx¼�Nx
2

f 1�0;0ðnxDx0; nyDy0Þf 10;0½ðnx
h

þ Nx � hxÞDx0; ðny þ Ny � hyÞDy0�

� exp j2pcot
pxp
2

� �
nxðNx

n
� hxÞðDx0Þ2

o
exp j2pcot

pyp
2

� �
nyðNy

n
� hyÞðDy0Þ2

oi
ð40Þ
and
Sðhx; hyÞ ¼ RHS2ðNx � hx;Ny � hyÞ �
X�Ny
2
þhy�1ð Þ

ny¼�Ny
2

X�Nx
2
þhx�1ð Þ

nx¼�Nx
2

f 1�0;0ðnxDx0; nyDy0Þf 10;0½ðnx
h

þ Nx � hxÞDx0;

� ðny þ Ny � hyÞDy0� exp j2pcot
pxp
2

� �
nxðNx

n
� hxÞðDx0Þ2

o
� exp j2pcot

pyp
2

� �
nyðNy

n
� hyÞðDy0Þ2

o
expf � jcðnxDx0; nyDy0Þg

� exp jc ðnx
	�

þ Nx � hxÞDx0; ðny þ Ny � hyÞDy0

�i

: ð41Þ
In Eqs. (40) and (41) we do not include the summation elements at the following values of nx and ny
nx; ny
	 


¼ Nx

2
;
Ny

2

� �
and nx; ny

	 

¼

�
� Nx

2
þ hx � 1;� Ny

2
þ hy � 1

�
: ð42Þ
We note that the f 1�0;0ðnxDx0; nyDy0Þf 10;0 ðnx þ Nx � hxÞ½ Dx0; ðny þ Ny � hyÞDy0� terms in the Eqs. (40) and

(41) can be determined by multiplying the previously calculated term f 1�0;0
�Nx
2

	 

Dx0; �Nx

2

	 

Dy0

	 

f 10;0

½ �Nx
2
� hx

	 

Dx0; ð�Ny

2
� hyÞDy0� given by Eq. (38) and
f 1�0;0
�Nx

2

��
þ hx � 1

�
Dx0;

�Ny

2

�
þ hy � 1

�
Dy0

�
f 10;0

�Nx

2

��
� 1

�
Dx0;

�Ny

2

�
� 1

�
Dy0

�

given by Eq. (39) and dividing the result of the multiplication by the value
f 1�0;0
�Nx

2

� �
Dx0;

�Ny

2

� �
Dy0

� �
f 10;0

�Nx

2

��
� 1

�
Dx0;

�Ny

2

�
� 1

�
Dy0

�

found by Eq. (27).

It is shown in Appendix B that it is extremely unlikely that Dðhx; hyÞ is ever zero. When we reach

hx0 ¼ ðNx=2þ 1Þ and hy0 ¼ ðNy=2þ 1Þ we note that
f0;0
Nx

2

��
� ðhx0 � 1Þ

�
Dx0;

�Ny

2

�
� ðhy0 � 1Þ

�
Dy0

�

¼ f0;0
�Nx

2

��
þ hx0 � 1

�
Dx0;

�Nx

2

�
þ hy0 � 1

�
Dy0

�
ð43Þ
the above expression is equivalent to f0;0ð0; 0Þ ¼ f0;0ð0; 0Þ.
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These equations allow us to determine f0;0ð0; 0Þ completely since
f 1�0;0

��
� Nx

2
Dx0;

�Ny

2
Dy0

�
f 10;0

Nx

2

��
� ðhx0 � 1Þ

�
Dx0;

Ny

2

�
� ðhy0 � 1Þ

�
Dy0

�
f 1�0;0

� �Nx

2

��
þ hx0 � 1

�
Dx0;

�Ny

2

�
þ hy0 � 1

�
Dy0

�
f 10;0

Nx

2

��
� 1

�
Dx0;

Ny

2

�
� 1

�
Dy0

��
�

RHS1ðNx

n
� 1;Ny � 1Þ exp jpcot

pxp
2

� �
NxðNx

h
� hxÞðDx0Þ2

i
� exp jpcot

pyp
2

� �
NyðNy

h
� hyÞðDy0Þ2

io
¼ f 10;0ð0; 0Þj j2: ð44Þ
Once we have this value we can choose an arbitrary phase for it and dividing it into Eqs. (38) and (39) for

the appropriate values of hx and hy , determine values for f 10;0ðð�Nx
2
ÞDx0; ð�Ny

2
ÞDy0Þ and f 10;0 Nx

2
� 1

	 
�
Dx0; ðNy

2
� 1ÞDy0�. To find all other values of f 1 can now divide these two values into the products provided

by Eqs. (38) and (39) for all values of hx and hy .
Finally, to recover our original signal, we multiply by exp �j/ lxDx0; lyDy0

	 
� �
, the complex conjugate

of the first random phase key used to encrypt our signal:
g0;0 lxDx0; lyDy0
	 


¼ f 10;0 lxDx0; lyDy0
	 


exp
�
� j/ lxDx0; lyDy0

	 
�
: ð45Þ
The 1D phase retrieval algorithm outlined in [22] cannot be simply extended to 2D because DðhxÞ defined in

[22] is guaranteed under specific constraints never to equal zero for all the relevant values of hx but ex-

tending the algorithm to more one dimension causes Dðhx; hyÞ to have zero values for certain values of

ðhx; hyÞ. This problem is overcome in our technique by the phase difference introduced by us in Eq. (22).

This is discussed in more detail in Appendix B. Indeed, this algorithm could be used purely for phase

retrieval in an analogous way to that described in [22]. In this case, we would only require one phase plane,

which would not have to be random.
As stated above, in [22], it was necessary to impose a relationship upon the orders px and qx in order to

ensure DðhxÞ is never equal to zero. In our algorithm, there is no restriction on the FRT orders we use (see

Appendix B). However, the algorithm is more prone to errors occurring in the recursive procedure if the

orders px and qx and also py and qy are close to each other.
5. Results

We present results of the simulations of four encryption processes for the same image and different

sampling densities (image pixel sizes). For simplicity only results for the encryption of an amplitude

signal are presented even though, as was pointed out earlier, it is possible to encrypt a second image on

the phase of this input signal. The image sizes used were 16� 16, 32� 32, 64� 64 and 128� 128. In all

the simulations of encryption presented here (px ¼ 0.5, py ¼ 0.5), and (qx ¼ 1.5, qy ¼ 1.5). The

decryption process was found to be extremely sensitive to small computational errors. For this reason, it

was necessary to quantise the input data and then, during the decryption recursive loop, to use our a

priori knowledge regarding the quantisation levels employed to remove any errors in the values. The
input image was also normalised before the encryption procedure so that the maximum intensity value

was equal to 1.

In the proceeding sections, the mean square error (MSE) is used as a measure of the level of encryption

of encrypted and incorrectly decrypted images. We note that it refers to the average square of the difference

between the pixel values of the correct image and the image being analysed. We also note that before MSE

is calculated the correct image and the analysed image are brought back to their initial quantisation level

where we deal with pixel values between 0 and 256 corresponding to the familiar grayscale representation.
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The MSE of incorrectly decrypted images is unusually large because the decryption algorithm returns

values that far exceed 255 in these cases. Fig. 2 shows results for the 32� 32 case. The input image is shown

in Fig. 2(a). The encrypted image is shown in Fig. 2(b), which displays the amplitude of a signal, whose real

and imaginary parts are given by the two intensities obtained from the encryption procedure. The MSE of
Fig. 2. Encryption/decryption results for 32� 32 image: (a) input image; (b) encrypted image; (c) decrypted image; (d) decrypted using

an incorrect value of px, out by 1� 10�5; (e) decrypted using an incorrect value of qx, out by 1� 10�5; (f) decrypted using an incorrect

phase key.
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this image was calculated to be 17394.69. A correctly decrypted image is shown in Fig. 2(c) with a MSE of

0.40. In Fig. 2(d), we show the result of decrypting with px ¼ 0.50001, i.e., an error of 1� 10�5 in the FRT

order in the x-direction. The resulting image has a MSE of 1:46� 1044. In Fig. 2(e), we show the result of

decrypting with py ¼ 0.50001. The resulting image has a MSE of 1:37� 1043. In Fig. 2(f), we show the result

of decrypting the signal using all the correct fractional order keys but a completely incorrect phase key. The

MSE of this image was calculated to be 1:51� 1075.
Figs. 3 and 4 correspond to the 32� 32 case. Both show how deviations from the correct values for px

and qx effect the MSE of the resulting decrypted image. Fig. 3 shows this variation for very small deviations

in the orders, in step sizes of 1:0� 10�6 while Fig. 4 is the same case for a wider range of deviations. It can

be seen that symmetry exists in the curves for increases in px and decreases in qx and vice versa.

Similarly, Figs. 5 and 6 both show how deviations from the correct values for px and qx affect the MSE of

the resulting decrypted image for the 64� 64 case. Fig. 5 shows this variation for very small deviations in

the orders, with step sizes of 1:0� 10�9 while Fig. 6 extends this range to larger deviations. Again there is

symmetry for increases in px and decreases in qx and vice versa. The piecewise linearity of the pattern shown
in Fig. 5 is due to the quantisation of the data values.

Attempts were made to carry out the same analysis for the 128� 128 case. While it was possible to carry

out both encryption and correct decryption it was not possible to calculate the MSE of incorrectly

decrypted images because the data generated in the decryption process exceeded values that could be

processed by the simulation software employed using standard means.
Fig. 3. Small error in decryption order keys used versus the resultant MSE of the decrypted 32� 32 image.

Fig. 4. Error in decryption order keys used versus the resultant MSE of the decrypted 32� 32 image.



Fig. 5. Small error in decryption order keys used versus the resultant MSE of the decrypted 64� 64 image.

Fig. 6. Error in decryption order keys used versus the resultant MSE of the decrypted 64� 64 image.
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As we analysed the results for the different sized images a trend emerged. The sensitivity of the fractional

order keys increased and the MSE of incorrectly decrypted images also increased with the size of the image
being encrypted. The reason for this is that larger images require a correspondingly larger recursive pro-

cedure. Errors propagate and accumulate through the algorithm the greater the number of iterations re-

quired. It is also worth noting that the last two values calculated by this recursive procedure are necessary

in order to determine f0;0ð0; 0Þ , which must be accurately determined in order to find all the other data

values. This implies that if an error propagates from any point in the recursive procedure, then it will affect

all of the pixel value estimates.

For the sake of comparison we present the same analysis for two other encryption schemes, which in-

corporate the FRT. The first of these is based on the procedure presented in [13] which consists of taking an
input (image) wave field and adding a random phase, carrying out an FRT of arbitrary orders and applying

a second random phase and finally carrying out a second FRT of another set of arbitrary orders. De-

cryption is the exact inverse of the encryption procedure, using the negatives of the FRT orders originally

used and the conjugates of the phase keys. We can examine sensitivity of the two FRT order keys when

decrypting the encoded image in Fig. 7. These should be compared with the results in Figs. 3–6. The en-

cryption procedure presented in this paper shows a considerable increase in sensitivity to the FRT order

keys used in terms of the size of the MSE of the incorrectly decrypted images. The second algorithm we

compare with our results is that presented in [12]. This method uses three FRT operations and instead of
using phase keys in these arbitrary FRT domains, a random juxtaposing of sections of the image is used

instead. The sensitivity of the three FRT order keys is shown in Fig. 8. Again these can be compared with

the results in Figs. 3–6. We can see that the encryption procedure presented in this paper again demon-

strates a considerable increase in sensitivity of the FRT keys used as indicated by the MSE of the incor-

rectly decrypted images.



Fig. 7. Error in decryption order keys for the method presented in [13] versus the resultant MSE of the decrypted images.

Fig. 8. Error in decryption order keys for the method presented in [12] versus the resultant MSE of the decrypted images.
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It is also possible to compare the number of recursive iterations for the different sized images. The re-

cursive part of the decryption process requires the following number of iterations
Number of recursive iterations ¼
XNy�1ð Þ

hy¼1

XNx2 �1ð Þ

hx¼1

X�Ny
2
þhy�1ð Þ

ly¼�Ny
2

X�Nx
2
þhx�1ð Þ

ly¼�Nx
2

1: ð46Þ
For the 16� 16 ðNx ¼ Ny ¼ 16Þ case the number of iterations is equal to 6120, for the 32� 32 case the

number of iterations is equal to 80784, for the 64� 64 case the number of iterations is 1166880 and finally

for the 128� 128 case the number of iterations required is 17,709,120.
6. Conclusions

In this paper, we have discussed the definition and some of the properties of the FRT and one of its

discrete forms. Using the correlation property we have developed a 2D encryption procedure by extending

the 1D phase retrieval procedure presented in [22]. Simulations show that the encryption keys are far more

sensitive than those of similar FRT-based encryption schemes. They are so sensitive in fact that the en-

cryption scheme could only be implemented with great difficulty using traditional optical methods, since we

would have to know the parameters of the system, namely the orders of the optical FRT transform, ex-

tremely accurately. Furthermore, the larger the input number of pixels the more accurately we need to
know these parameters. The results presented show the proposed technique to be a highly effective method

for the digital encryption of multidimensional data.
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Appendix A. Correlation property proof

If we expand the left hand side of Eq. (9) using the inverse relation to determine f0 we get
XNy2 �1
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f �
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Since the inner two summations are over an identical range we can place them within one summation

over a single variable.
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Appendix B. Why D is unlikely to equal zero

As indicated in the text it is important that the denominator variable appearing in Eq. (33) is not zero.

Here we examine the behavior of this variable.
Dðhx; hyÞ ¼ aðhx; hyÞdðhx; hyÞ � bðhx; hyÞcðhx; hyÞ
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This can only be 0 if
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Since it is extremely unlikely (and can be easily avoided) that all the random values, in the range [0,2p],
will add in the above equation to produce a multiple of 2p we can assume that Dðhx; hyÞ will never have a
zero value and the recursive algorithm can proceed without error. We must remove the random function

values and the second dimension to reach the equivalent condition for the phase retrieval method given in

[22]
�jpcot cot
pxp
2

� ��
� cot

qxp
2

� ��
ð�2hx þ 2ÞðNx � hxÞðDx0Þ2 ¼ multiple2p: ðB:4Þ
This failure condition is guaranteed never to happen [22] if
Dx20 sin
ðqx�pxÞp

2

� �
sin pxp

2

	 

sin qxp

2

	 
 ¼ 1

2N
: ðB:5Þ
When we extend the algorithm in [22] to a second dimension, the condition for Dðhx; hyÞ to have a zero

value is
�jpcot cot
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which can happen even if the above the orders are set such that Eq. (B.5) (2 above) is held. With the

addition of the random phase keys we need not worry about Dðhx; hyÞ and it is not necessary to impose any

relationship between px and qx. To support this claim we note that in over 10000 applications of our
software the null case has never occurred.
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