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This article reports on the results from a spatiotemporal analysis of disaggregate fire incident data. The in-
novative analysis presented here focuses on the exploration of spatial and temporal patterns for four principal fire
incident categories: property, vehicle, secondary fires, and malicious false alarms. This research extends previous
work on spatial exploration of spatiotemporal patterns by demonstrating the benefits of comaps and kernel
density estimation in examining temporal and spatiotemporal dynamics in calls for services. Results indicate that
fire incidents are not static in either time or space and that spatiotemporal variation is related to incident type.
The application of these techniques has the potential to inform policy decisions both from a reactive, resource-
allocation perspective and from a more proactive perspective, such as through spatial targeting of preventive
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ire, whether malicious or unintentional,

has either directly or indirectly affected the
majority of the populace, imposing significant
economic costs, psychological damage, physical
injuries, and death. The economic cost of fire is
far from trivial; the Office of the Deputy Prime
Minister estimated the costin 2003 to be £7.7bn
(~ $14.3bn) in England and Wales, with each
domestic fire on average costing £25,000
(~ $46,400) (ODPM 2005b). In addition, hoax
calls contribute a large and unnecessary cost to
the fire service—estimated for the Welsh fire
services alone at £700,000 (~ $1.3 m) in 2005
(BBC News 2006). For the individuals and
families involved there are of course more per-
sonal aspects related to the loss of life, injuries
sustained through burns and smoke inhalation,

and the psychological effects that such incidents
may cause. In the United Kingdom, injuries
caused by fire and flame are comparatively more
serious than other home-related injuries
(DiGuiseppi et al. 2000). In 2004 there were
405 deaths (0.68 per 100,000 population)
and 12,200 (21.4 per 100,000 population) inju-
ries recorded in the United Kingdom resulting
from dwelling fires (ODPM 2005a). This
compares to a fire facility rate of 0.1 per 100,000
population in Australia and 0.07 in New
Zealand (2003-2004 figures; Australasian Fire
Authorities Council 2005). Figures provided in
Lapidus et al. (1998) suggest that in the United
States an estimated 5,000 (1.84 per 100,000
population) people die each year from residen-
tial fires.
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In contrast to the examination of crime pat-
terns, the geographical variations of fire inci-
dence have been the subject of relatively less
attention. The contention of this article is that
geographical studies of fire incidence represent
an important public health issue in which
geographical information systems (GIS)
have a potentially significant role to play in
terms of risk identification, resource targeting
and routing of fire personnel and equipment,
allocation of preventative measures (such as
smoke alarms), and policy evaluation. Although
there has been a relatively large published lit-
erature on GIS-based techniques for the iden-
tification, assessment, and management of
wildfires (see, e.g., Pew and Larsen 2001; Jaiswal
et al. 2002; Vakalis et al. 2004a, 2004b;
Hernandez-Leal, Arbelo, and Gonzalez-Calvo
2006), there has been much less research on
spatiotemporal patterns of property fires (PFs)
and vehicle fires (VFs) and of hoax calls. Among
the emergency services such as the police, fire,
and ambulance services, there is an increasing
recognition of the potential benefits of using
GIS particularly as related to mapping applica-
tions. GIS has been used extensively, for exam-
ple, to assist in vehicle dispatch and the
identification of optimal fire station locations
(Liu, Huang, and Chandramouli 2006). In ad-
dition, GIS are increasingly being used in the
preparation of integrated risk management
plans IRMPs), which have been required of
each fire service in the United Kingdom since
2004 (ODPM 2005b). These plans are strategy
documents that outline how each fire service
will address its prevention and response objec-
tives. Ormsby (2005) provides some recent ex-
amples of the wider use of GIS within the fire
service in terms of prevention through targeting
buildings for inspection and in examining spa-
tial patterns of buildings at risk. Increasingly,
GIS is being used to visualize maps of fire safety
risk assessments and to organize detailed pro-
grams of inspections or educational interven-
tion campaigns within a forces’ area. Some fire
and rescue services are also using GIS in fire
safety checks by targeting hotspots of poten-
tially high risk based on socioeconomic charac-
teristics, reinforced by analyses of previous
patterns of fire incidence. However, many of
these studies are context-dependent and more
research is needed to examine how transferable
these findings are to other countries.

Substantial interest in GIS-based analyses of
crime data has resulted in a number of dedicated
texts (e.g., Weisburd and McEwen 1997,
Harries 1999; Goldsmith et al. 2000; Hirsch-
field and Bowers 2001; Leipnik and Albert 2003,
Paulsen, Robinson, and Robinson 2004; Boba,
2005; Chainey and Ratcliffe 2005; Eck et al.
2005), but relatively few studies describe the
application of GIS techniques in exploring spa-
tial and temporal dynamics of fire incidents
(Merrall 2001). There are parallels to the types
of analyses conducted in crime applications and
in particular to issues surrounding techniques
used to explore detailed patterns of disaggregate
point level data, however more studies are need-
ed to fill the gaps in this literature. Some
research has analyzed the socioeconomic char-
acteristics of areas in relation to the levels of fire
incidences experienced. Jennings (1999) pro-
vides the most recent review of studies examin-
ing relationships between socioeconomic
factors and fire incidence and risk. That work,
which drew on studies in the United States
largely from an urban (residential fires) per-
spective, includes a review of factors such as
abandonment and property decline on intra-
urban variations in fire rates. Jennings also drew
on an earlier study of three U.K. urban areas
that found that factors such as the age of
housing, housing tenure, and socioeconomic
status (social class, unemployment status, eth-
nicity) are correlated with fire rates (Chandler,
Chapman, and Hallington 1984). A more recent
GIS-based socioeconomic study of fire inci-
dents (Corcoran et al. 2007) investigated four
types of fire incidents and their association with
thirty-two census-derived variables for South
Wales, United Kingdom. Results indicate that
wards in which residents have relatively lower
levels of educational attainment are associated
with higher proportions of VFEs, PFs, and sec-
ondary fires (SFs), and wards with lower pro-
portions of white residents are associated with
more PFs. In addition, wards that exhibit a
higherlevel of crowding are more susceptible to
VFs and SFs. Our previous research (Corcoran
et al. 2007) suggests that malicious false alarms
(FAs) are more prevalentin areas that have lower
proportions of childless couples and lower pro-
portions of car owners. The research presented
in this article extends the spatial exploration
of patterns identified in our previous work by
demonstrating the benefits of comaps and
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kernel density estimation (KDE) in examining
temporal and spatiotemporal dynamics in calls
for services. These techniques in themselves are
not innovative, but to our knowledge they have
not been applied to calls for service data, and
their potential in examining spatiotemporal
patterns in fire incidence remains underre-
searched. Specifically, we explore the spatial,
temporal, and spatiotemporal dynamics for four
fire incident types (PFs, VFs, SFs, and FAs) for
a fire service area in South Wales, United
Kingdom, in order to illustrate the potential of
such techniques and discuss their transferability
to other contexts.

The rest of the article is structured in four
sections. We first introduce the study area and
the data sets used, then focus on the techniques
used to examine spatial and temporal patterns.

"G

Study area (black)

The next section presents the results from the
analysis, and the following section discusses the
findings coupled with the advantages and lim-
itations of the approach we have taken and ways
in which this research can be progressed. The
final section draws on the findings from this re-
search and offers some preliminary conclusions.

Methodology

Study Area and Data Sources/Preparation

In this study we have access to detailed disag-
gregate data in the form of a database of calls for
service to fire incidents for a four-year period
(1 January 2001-31 December 2004) across the
South Wales Fire Rescue Service (SWFRS)
command region (Figure 1). Fifty fire stations

Monmouth ®

A Fire station

] Command boundary
@ Major Towns/Cities
A Cansus 2001 ward population (count)
487 - 2,930
N 2,931 - 4,830
P B 4,831 -7,293

20 Mies [N 7.2% - 10,791

Figure 1

I 10,792 - 16,339

South Wales Fire and Rescue Service command region.
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Table1 Descriptions of fire incident types

Code Definition Number of Percentage
incidents of total
incidents

PF Property fires: All fires involving property (e.g., dwellings, public buildings, work- 13,157 13.39
places).

VF Vehicle fires: Vehicles (except derelict or abandoned vehicles). 16,723 17.02

SF Secondary fires: Derelict buildings/vehicles; refuse or refuse containers; outdoor 62,444 63.54
structures (e.g., fence, gate, road sign); grass.

FA False alarms: False alarms deemed malicious/deliberate. 5,944 6.05

provide cover for a population of just fewer than
1.4 million, which includes six major urban
centers: Cardiff, Merthyr Tydfil, Newport,
Pontypridd, Monmouth, and Barry. Each call
for service comprises a date, a time, a grid ref-
erence, and the type of incident. A description of
fire incident types is provided in Table 1, which
distinguishes the main categories of fires. Calls
for fire service data were used, as the time stamp
recorded is likely to be relatively close to the
actual time of the ignition of the fire. Though
this may not be the case in some instances of
smoldering fires or fires in remote regions (e.g.,
grassland fires), such exceptions were deemed to
not significantly affect the subsequent analysis
because the overwhelming majority of the re-
corded incidents occurred in populated regions.
In all, data were collected for 13,286 primary
fires involving property (PFs), 16,872 VFs,
62,895 SFs, and 6,112 FAs, amounting to just
over 99,000 incidents in total. Data not con-
taining any spatial reference totaled 685 (0.69
percent), including 94 PFs (0.7 percent), 106
VFs (0.62 percent), 328 SFs (0.52 percent), and
157 FAs (2.57 percent), and these were omitted
from the analysis.

An important consideration when perform-
ing a spatial analysis on incident data is the ac-
curacy of the spatial location assigned to each
incident. Since 1999 the SWFRS has assigned a
spatial reference to all incidents recorded; how-
ever, over time there have been refinements
both to the number of records contained in the
geocoding gazetteer and through the introduc-
tion of hand-held global positioning (GPS)
units. Between 1999 and 2002 the gazetteer
used to spatially reference each incident con-
tained a total of 30,000 location records, how-
ever there are cases where incidents could be
tagged with “parish references” that equated to
a single location within a fire service defined
local area. Using such a spatial granularity un-

doubtedly introduces some spatial errors where
the mapped location of an incident may not
equate to the exact location of a fire. For inci-
dents occurring post-2002 the geocoding gaz-
etteer was extended to include more than
600,000 location records. Some spatial errors
are still possible when, as a result of information
provided by the caller, fire resources are mobi-
lized to street references and in some cases par-
ish references as opposed to exact locations. In
the case of nonaddressable locations (such as
stretches of roads), incidents are often associat-
ed with the location of the nearest roundabout
or intersection.

An additional important improvement that
potentially impacts on the accuracy of the geo-
coding was the introduction of handheld GPS
units in 2002. These units provide a grid refer-
ence of the fire that is radioed back to head-
quarters via a verbal radio message. This
technology is likely to have the greatest influ-
ence for nonproperty fires (e.g., grassland fires
and VFs) where an exact reference in the gaz-
etteer is less likely. Overall, changes in the
SWES geocoding procedures over the time pe-
riod under investigation here could have influ-
enced patterns in some incident types but such
analysis was beyond the scope of this prelimi-
nary exploratory study and will form the basis of
our future studies in this area.

Using the geographical locations, all of the
incidents per ward were aggregated for each in-
cident category using ArcGIS 9.1 (2005). The
incidence rates (per 1,000 population) were
then calculated using the population of the tract
at the time of the 2001 Census of Population.
Using resident population rather than the num-
ber of households as the denominator is com-
mon with other studies and was justified in this
study by the strong correlation (not presented
here) between the number of households and
the number of people residing in wards in
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Table2 Change in incident rates by type over the period 2001 to 2004 (rate per 1,000 population)

Code 2001 2002 2003 2004 Overall change
Property fires 2.15 1.89 1.83 1.64 —24%
Vehicle fires 2.46 2.48 2.63 2.10 —15%
Secondary fires 9.98 8.20 11.91 7.32 —27%
False alarms 1.03 0.84 0.77 0.72 -30%

England and Wales. Due to the size of the pop-
ulation in the study area (~ 1.4 million in the
2001 Census) and in common with GIS-based
crime studies at this geographical scale, rates are
calculated per 1,000 population.

Analyzing the change of incident rate
(Table 2) highlights the fact that for each inci-
dent type there has been a reduction over the
four-year period. The most marked reduction in
rate is for FA incidents, followed by SFs, then
PFs, and finally VFs. For SFs there was a
marked increase (45 percent) in rate during
2003 that subsequently reduced the following
year by 39 percent that equated to an overall 27
percent decrease in the rate over the four-year
period. Inspection of the time series highlights
that the increase experienced during 2003 was
an accentuation of the same temporal patterns
in other years (see the discussion of temporal
dynamics in the Results section), however no
further data were available to help explain this
increase.

Techniques Used

We used three kinds of techniques in this study:
temporal, spatial, and spatiotemporal. To in-
vestigate temporal patterns, simple line and cir-
cular plots were used for different granularities
of time (i.e., hourly, daily, and monthly). Spatial
techniques first explored the concentration
through the use of a cumulative sum technique
based on wards. This was coupled with the re-
sults from a kernel density “risk surface” from
our previous research (Corcoran et al. 2007) to
highlight the spatial variability across the study
area and to show how these variations changed
by incident category. In this article we explore
the interaction of space and time using a tech-
nique called the comap (Brunsdon 2001). The
advantage of comaps in this context is that they
areable toillustrate the entire time period under
study in a single visualization, an advantage over
the more traditional map animation methods
used to explore spatiotemporal dynamics. Es-

pecially where there are numerous changes in
pattern, a synoptic visualization approach such
as the comap offers the potential for greater in-
sight to be achieved.

The comap builds on a technique known as
the co-plot (Cleveland 1993) that is used to ex-
amine the relationship between a pair of vari-
ables (in our case the x and y locations of a
particular fire incident) that are conditioned
using a third variable, z (in our case a measure of
time, such as hour of day). Using this method it
is possible to investigate the relationship be-
tween the locations of fire incidents (x and y) and
their variation given different values of time =z.
For the purposes of our investigation we ex-
plored the effect of different granularities of
time z (i.e., month, day, and hour) and their
effect on the spatial distribution of fire incidents
(¢ and y). This process was repeated for each
incident type. The comap works by subsetting
observations, in this case individual fire incidents
(on the basis of the conditioning variable z),
and represents the output as a scatter plot. This
is repeated for each subset, and the individual
plots are arranged in an ordered set of panels
such that the relationship of x and y can be ex-
plored as z increases. The subsetting principles
are governed by two main rules: first, the range
of each subset must have some overlap with each
adjoining subset, and second, each subset must
contain approximately the same number of ob-
servations. The main reason for these rules is
that the resulting output should not be an ar-
tifact of the classification process; for example,
deciding to subset the data into hourly sets may
occlude a pattern that is not readily discernable
using an hourly classification.

The distinction between the co-plot and co-
map is simply that if the data used are geo-
graphical in nature (i.e., they possess x, y
coordinates), then each panel in effect becomes
an individual map—hence the term comap
(Brunsdon 2001). Interpretation of the panels
in relation to the ranges is given in Figure 2.
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Figure 2 (A) Interpretation of a univariate comap. (B) Interpretation of a bivariate comap.

Figure 2A shows six panels conditioned using
the variable of hour (numbered 1 to 6). Each
panel corresponds to a range of time, with the
lower ranges appearing first. Figure 2B shows
the interpretation of a bivariate comap, where
the data are conditioned on two variables (hour
as before, in addition to day). Note that in the
bivariate comap the ranges for the second condi-
tioning variable do not overlap as they do with
hour. This is because the day period is a categor-
ical variable and not continuous as hour and
therefore must be treated differently as it is no
longer possible to select subsets with the same
numbers of observations. In this case days are
grouped together in a manner that attempts to
achieve a similar number of observations per
panel. This situation is also the same as that
for monthly variations and hence is treated in
the same way described here. In spite of this
modification, the outputs still have potential to
offer some useful insights into spatiotemporal
patterns.

The use of points in each panel (in the form of
a scatter plot) to represent the locations of a
particular fire incident can be effective in situ-
ations where the number of incidents is limited
and/or reasonably well dispersed. Where inci-
dents are both numerous and clustered, the
point representation can become difficult to in-
terpret as the actual number of incidents can be
impossible to determine. This is especially the

case when a single locality is subject to multiple
incidents. An improved method of visualization
is to apply KDE (Silverman 1986) to create a
risk surface. In the case of the comap, a risk
surface is produced for each panel, with the
darker shading indicating a higher number of
fire incidents.

KDE has become a popular visualization
method in situations where the volume of inci-
dents is relatively large and spatially clustered
(see, e.g., Brunsdon, Corcoran, and Higgs
2007). The risk surface output of the KDE
readily permits identification of areas exhibiting
high concentrations of fire incidents in contrast
to those showing lower incidence levels. The
derivation of the density estimates in this study
were based on the physical area of the kernel,
however itis recognized that this could be mod-
ified to use the underlying population as the
denominator. Although use of the underlying
population for PFs might generate some inter-
esting results, its use with SFs and VFs seems
less applicable, therefore physical area was used
as the denominator across all incident types.
However, it is acknowledged that the use of al-
ternative denominators could form the basis for
future research efforts.

The use of comaps to explore spatiotemporal
patterns offers a number of advantages and lim-
itations. Advantages include the fact that the
comap is synoptic, in other words the technique
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is capable of representing the entire time period
under study in a single visualization. This per-
mits superior comparative analysis to be made
between the temporal and spatial dimensions
for the whole temporal coverage, in contrast to
map animation where each time period is
represented as a single visualization. The co-
map is particularly advantageous over map an-
imation where there are large spatial variations
between subsequent time slices (Brunsdon,
Corcoran, and Higgs 2007). A second advan-
tage is related to the way the comap technique
portions the data into each map panel using
Tufte’s “small multiple” principle (also known
as “small multiple design” or “small multiples”;
Tufte 1990, 67). This classification process (i.e.,
how the data are divided into various temporal
divisions) attempts to achieve an overlap be-
tween class boundaries in order to achieve a
similar amount of data in each map panel and
thus avoid the output being a function of the
classification process.

A limitation of the comap technique is that it
requires both a certain level of familiarity with
the underlying concept of the comap creation
and the experience needed to interpret the find-
ings from such analysis. This aspect s presented
in the next section.

Results

Spatial Analysis of Fire Incidents

The first part of the investigation targeted a
ward level of analysis (a ward is a geographical
unit comparable to a census tract in the United
States). Specifically, the total count for each in-
cident type per ward was used to derive a mea-
sure of spatial concentration using a cumulative
sum method. This permitted examination of the
spatial concentration relative to both the study
region and the population at risk. The geo-
graphical pattern of hoax calls (FA) showed the
highest spatial concentration with 13.5 percent
of the wards (containing 23.3 percent of the to-
tal population) being subject to 50 percent of
FA incidents within the study area. This com-
pares to 17.6 percent of the wards and the 25.7
percent of the population therein, accounting
for 50 percent of SF incidents, and 18 percent of
the wards, with 29 percent of the population
accounting for 50 percent of VF incidents. The
least spatial concentration is for PF incidents

where 21.8 percent of wards (containing 37
percent of the total population) are the subject
of 50 percent of all PF incidents.

Often the use of administrative boundaries
can place artificial constraints on data and thus
influence the interpretation of the results.
Therefore the results presented above are sup-
plemented with the findings of a KDE analysis
presented in a previous paper (Corcoran et al.
2007). These results reinforce the spatial vari-
ability of fire incidents across the study region,
highlighting four key observations:

o The lowest fire incident intensity for all
categories is at the eastern side of the
region.

o Allincident types exhibit a common high
spatial concentration in the south of the
command region—the consequence of a
higher concentration of population in
that area (Cardiff, Barry, and Newport).

o FAs show the smallest geographical area
affected, with the main concentration
around the Cardiff region.

o SFs shows the greatest geographical area
affected. Of particular note is the area to
the northwest of Pontypridd, which does
not exhibit that level of intensity for the
other incident types.

Temporal Dynamics

To explore the temporal dynamics of each in-
cident, simple plots were created for various
temporal granularities: monthly, daily, and
hourly. For each plot the mean monthly, daily,
and hourly values were first computed to derive
a percentage deviation from the mean. The re-
sulting output permits a useful way by which
temporal rhythms at various granularities can
be examined.

Monthly ~ Monthly variations (Figure 3) are
most marked in the SF incident type, where
there are deviations from the mean during
March (+69.59 percent) and April (+97.03
percent), the fewest calls for service occurring in
December and January 57.13 and —53.19
percent, respectively). The March/April peak is
also present in each of the other incident types,
though far less pronounced. The least monthly
variation is found with the VF type followed
closely by PFs. In addition to the March/April
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Figure 3 Monthly distribution.

peak, FA has a secondary peak in October (9.42
percent).

Daily  Each incident type displays a similar
daily pattern of greatest positive deviations dur-
ing the weekend with fewer incidents than the
mean occurring throughout the weekdays
(Figure 4). The largest deviations from the
mean are with VF's that exhibit the largest skew
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toward the weekend days. This is followed by
SFs that is the only incident type to show a pos-
itive deviation for a weekday (Monday).

Hourly  The greatest deviation from the
mean hourly rate is displayed by SF with the
peak times being between 19:00 and 20:30, fall-
ing below the mean between the hours of 22:30
and 13:30 (Figure 5). A similar distribution is
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Figure 4 Daily distribution.
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2FM

Figure 5 Hourly distribution. PF = property fire; VF = vehicle fire; SF = secondary fire; FA = false alarm.

also exhibited by FA, with a peak time of around
20:30, falling below the mean slightly later than
the SF type (00:30 and 14:30). VF has the latest
peak times (21:30-22:30) and only falls below
the mean hourly rate from 03:30 undil 17:00. PF
shows the least deviation from the mean hourly
rate in comparison to the other incident types,
with peak times between 17:00 and 20:30, and
falling below the mean from 23:30 and 12:00.

Spatial-Temporal Dynamics

The results presented thus far have highlighted
that fire is not evenly spread in either space or
time, and that this unevenness varies by incident
type. However, the results presented are inca-

pable of demonstrating the interaction between
space and time. Using comaps it is possible to
find out if the same high-risk areas are subject
to temporal fluctuations in fire incidence, and to
investigate whether temporal fluctuations are
specific to areas that are not typically within
high-risk locales. Finally, the effect of incident
type is also investigated. Using both univariate
and bivariate plots ( for each conditioning vari-
able: month, day, and hour), spatiotemporal
variations were investigated for each of the in-
cident types, of which a subset is discussed in
this article.

The univariate comap of FA conditioned by
hour (Figure 6) shows a change in risk over the
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Figure 6 Univariate comap for false alarms (by the hour).

24-hour period. There is a relatively high con-
centration of FA incidents throughout the en-
tire period in the Cardiff region, but other areas
exhibit changes in their relative risk. The New-
portregion shows a low intensity of incidents dur-
ing the early hours of the morning (see panel 1),
then increasing intensity through the day until
it forms a corridor connecting to the Cardiff
region during the early afternoon and early
evening (see panel 3). Other regions beyond

those of Cardiff and Newport appear to be most
prevalent in panel 5, representing incidents
during the evening (from around 18:00 to
around 22:00).

The univariate comap of PF conditioned by
hour (Figure 7) shows very little change over the
24-hour period. The main concentration in the
Cardiff region remains consistent throughout
the period, as do the concentrations in the sur-
rounding regions, suggesting that increases in
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Figure 7 Univariate comap for primary fires (by the hour).

PFs are not spatially differentiable—simply the
same areas are subject to the increases and
decreases in household fires.

Figure 8 shows the bivariate comap of SF by
hour and month. Here distinct spatial differ-
ences can be seen in both conditioning vari-
ables. First, over a 12-month period the location
of the highest intensity varies dramatically over
monthly intervals. The Cardiff region has the
highest intensity between June and February,
but between March and May the highest inten-
sity shifts to the northeast of Pontypridd. Spatial
differences are also evident by hour, with the
greatest variation being in the October to Feb-
ruary period where late afternoon/early evening
shows the development of higher incident in-
tensities around the Pontypridd region (see
panel 2A).

Finally, the bivariate VF comap conditioned
by hour and day of week (Figure 9) shows the
main intensity areas (in and around the Cardiff
region) to be stable throughout the day and
week. The main variations are by hour (partic-
ularly between Mondays to Thursdays) where
the Pontypridd region experiences a rise in in-
tensity during the afternoon through to the
evening/night that dissipates during the early
hours of the morning through to the afternoon.
This phenomenon is less pronounced on Fri-
days, Saturdays, and Sundays where the hourly
variation exhibits less of an influence.

Discussion

A primary aim of this study was to use visual-
ization techniques based on comaps and KDE
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Figure 8 Bivariate comap for secondary fires (by the hour and month).

to investigate spatial patterns of fire incidents
and their variation over time. There has been
some use of such techniques in investigating
spatiotemporal patterns in crime incidence (see,
e.g., Brunsdon, Corcoran, and Higgs 2007), but
there has been less research focusing on varia-
tions in fire incidence. We redress this gap in the
research through the use of a range of spatial,
temporal, and spatiotemporal techniques ap-

plied to disaggregate fire incident data. To date,
KDE has been applied in fields such as crime
and health studies, butits application to fire data
hasyet to be fully explored. In addition, whereas
the majority of previous studies utilized rela-
tively coarse spatial and temporal unit of anal-
ysis, the motivation of this study was to explore
microscale spatial and temporal dynamics using
the disaggregated data that are increasingly be-
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Figure 9 Bivariate comap for vehicle fires (by the hour and day of week).

ing collected by emergency services. Here mi-
cro is defined as point data for each fire incident
(each fire incident having an x, y coordinate)
containing an hour and date pertaining to the
timing of the call for service.

Our findings suggest that fire incidents vary
in both time and space, with the degree of vari-
ation being dependent on incident type. The
types of techniques developed in our research
provides a means through which we can inves-
tigate such trends at detailed spatial scales as

well as examine potential reasons for such
trends in any future research. This could in-
volve a detailed study of the socioeconomic cir-
cumstances of each of the areas and a detailed
consideration of any temporal variations fol-
lowing fire prevention strategies (e.g., the in-
stallation of smoke detectors). Of the four
incident types investigated, PFs varied the least
over both space and time, whereas VFs, SFs, and
FAs all showed larger temporal deviations, with
the trend being toward the weekend and
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evenings/nighttime. SFs showed the largest
monthly variation with significant increases
during March, April, and May that additional-
ly showed the most distinct spatial deviation
from the spatial patterns exhibited in other
months. Differences in spatial pattern were also
evident in VFs and FAs, the tendency being for
the Cardiff region to consistently contain the
majority of the incidents (particularly the case
for FAs), the variation being in outlying regions,
largely throughout the week and over a 24-hour
period. To examine any differences between ur-
ban and rural/suburban patterns, further re-
search (utilizing additional contextual data such
as the census) is needed to explain these patterns
inmore detail and to see if they are related to, for
example, levels of urbanization within the study
area. The availability of a small area classifica-
tion of census areas in the United Kingdom by
the Office of National Statistics for the 2001
Census of Population could be useful in this
regard.

To date, the majority of studies on trends in
fire incidence have generally been conducted at
relatively coarse spatial scales (such as citywide
and regional levels) for which census data are
available. The lack of precision in geocoding in
the past has also meant that only aggregate
analysis was possible. However, the availability
of detailed disaggregate data sources of the type
we have had access to in this study and the in-
creasing use of GPSs within the emergency ser-
vices have led to the development of rich sources
of data that can be used within GIS to investi-
gate such trends. Jennings (1998) suggests that
there has been a lack of microlevel fire studies to
date and that GIS can be used to examine re-
lationships between fire incidence and the built
environment. Many of the techniques we have
been developing during the course of our re-
search are not currently available in commercial
GIS packages. Previous studies have also tradi-
tionally used relatively coarse temporal units
such as monthly and annual counts of fire
ncidence. Some notable exceptions to this are
evident in the work of Dodge (1996), who

identified that the weekly distribution of fire
incidents is not uneven and that small fires and
FAs tend to occur on Fridays and Saturdays,
whereas nonmalicious false alarms (deemed
as good intent) are more prevalent during
weekdays. A comparable finding is reported in
our study whereby the FA incident type

exhibits similar behavior at the daily level of
analysis.

Our future work will involve a more in-depth
investigation of the findings presented here.
Such research could follow a number of strands.
First, given a more detailed breakdown of VFs
into deliberate or nondeliberate types (with
suitable confidentiality/privacy constraints),
more detailed conclusions could be drawn. In
addition, a more comprehensive analysis of PF
incidents could be obtained with the use of fur-
ther contextual data such as type of house, ten-
ancy, gender, and presence of fire alarm
equipment. Such a level of analysis is support-
ed by the work of Lapidus et al. (1998, 105), for
example, who found in their study of residential
fire incidence in Hartford, Connecticut (for
1992-1994), thata large proportion of homes in
census tracts with high levels of house fires
either had no smoke detectors present or had
smoke detectors that were nonfunctional. Other
potential factors could be used to explore
temporal distributions such as temperature
and other climatic variables in relation to for-
estor heathland fires and the spatial relationship
between teenage population and, for example,
hoax calls and arson fires. Dependent on the
availability of appropriate data sources for our
study area, this analysis could be expanded to try
to explain the findings presented in this article.
Finally, further work is now required to assess
the transferability of the findings presented here
to other contexts and international settings.

Conclusions

The majority of studies to date in the area of fire
applications have used GIS to examine aggre-
gate incident patterns in relation to socio-
economic data (largely at the level of census
tracts). These have focused primarily on spatial
snapshots of fire incidence in relation to, for
example, small area data using traditional cor-
relation and regression techniques. The appli-
cation of mapping has proved to be useful for
front-line fire services and community safety
teams in targeting prevention initiatives such as
educational programs and digital mapping, with
the result that GIS software has been increas-
ingly taken up by emergency services in fire
planning, fire safety, and risk-assessment appli-
cations. Relatively few studies have investigated
the spatiotemporal dynamics for different types
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of fire incidents and the potential influence of
spatial and temporal variations in socioeconom-
ic conditions. The availability of disaggregate
sources of data related to incidents provides the
potential for a more detailed analysis of such
patterns. To show how fire incidents vary in
both time and space, this study utilized visual-
ization techniques previously applied to crime
and health data. Our findings suggest that such
trends differ according to incident type and have
the potential to provide important exploratory
analysis prior to more detailed investigations.
These investigations could involve the use of
contextual data (e.g., land use, type of residence,
and construction type) in addition to more de-
tailed descriptions of incident types (such as the
presence of smoke alarms, extent of fire and
smoke damage, response times, and the number
of recorded casualties and fatalities) in attempt-
ing to explain such patterns. More generally, the
application of these techniques has the potential
to inform policy decisions both from a reactive,
resource-allocation perspective and from a
more proactive, preventative perspective such
as spatial targeting of preventative measures. ll
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