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ABSTRACT
Adult mesenchymal stem cells possess a remarkably diverse array of immunosuppressive characteristics. The capacity to suppress the regular

processes of allogeneic rejection, have allowed the use of tissue mismatched cells as therapeutic approaches in regenerative medicine and as

agents of immune deviation. This review describes recent advances in understanding the mechanistic basis of mesenchymal stromal or stem

cells (MSC) interaction with innate immunity. Particular emphasis is placed on the effect of Toll-like receptor signalling on MSC and a

hypothesis that innate immune signals induce a ‘licensing switch’ in MSC is put forward. The mechanisms underlying MSC suppression of T

cell responses and induction of regulatory populations are surveyed. Conflicting data regarding the influence of MSC on B cell function are

outlined and discussed. Finally the limits to MSC mediated immune modulation are discussed with reference to the future clinical application

of novel cell therapies. J. Cell. Biochem. 112: 1963–1968, 2011. � 2011 Wiley-Liss, Inc.
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C ell-based therapies to treat human disease are set to become

clinical reality. To the fore of these novel approaches is the

use of adult mesenchymal stromal or stem cells (MSC). The term

‘mesenchymal stem cell’ was coined by Caplan in 1991 [Caplan,

1991] to describe the rare population of bone marrow derived,

plastic adherent cells discovered by Friedenstein and Petrokova

[1966]. Originally these stromal cells were assumed to directly repair

degenerative disease by differentiation; however, it is now

appreciated that MSC also release soluble factors that act in a

paracrine manner to promote repair [Caplan, 2009]. However, while

MSC might be considered as trophic agents that guide the processes

of tissue repair, the nature of the trophic activities remain ill defined.

The beneficial actions of MSC encompass anti-apoptotic,

cytoprotective effects and the promotion of angiogenesis [Caplan,

2009] and it is the multifactorial, coordinated and targeted features

of MSC that make the cell therapy approach superior to small

molecule modalities. Angiogenic action is likely to be an important

component of tissue repair; pericyte mediated vascular stability

contributes to wound healing and tissue resident MSC may be

derived from a perivascular precursor [Bianco et al., 2010], and may

be intimately involved in neovascularisation of wounds and

therefore regeneration.

Whilst the above features are important attributes of MSC

biology, one trophic function has become the subject of intense

scrutiny in the last 7 years. It is now apparent that MSC are powerful

modulators of the mammalian immune response. These findings

date back to studies which demonstrated that tissue mismatched

(allogeneic) and even species mismatched (xenogeneic) MSC were

effective cell therapies [Bartholomew et al., 2002; Grinnemo et al.,

2004]. The implications were that MSC would disobey the regular

rules of tissue transplantation and enjoy a degree of immune

privilege, such that cell therapy could be based on allogeneic cells

rather than autologous cell transplantation. This belief has

important consequences as it means that MSC could be used as a

commercially viable product, that was amenable to scale up and

standardisation. It also implied that allogeneic MSC could be used as

agents of immune deviation in conditions such as graft versus host

disease (GvHD), type I diabetes or autoimmune diseases, in addition

to regenerative applications for myocardial infarction or joint

damage.
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The intervening years have seen a rapid delineation of the

mechanisms by which MSC modulate different aspects of both the

innate and adaptive immune response. This has been accompanied

by a large number of clinical trials in which allogeneic MSC have

been safely deployed against a wide range of human diseases. This

article will outline the immunological processes modulated by MSC,

propose a model that attempts to resolve some conflicting data

especially in innate immune modulation, discuss the implications

for cell therapy, and finally survey those aspects of MSC biology that

require further study.

MSC SUPPRESSION OF INNATE IMMUNITY

The innate immune system is a complex, rapid and effective barrier

to microbes but is also a series of interlinked responses that can

confound transplantation and cell therapy. These responses may be

cell based, or involve serum components such as the complement

system. Allogeneic human MSC and indeed some xenogeneic MSC

typically avoid acute and hyperacute rejection mechanisms

normally mediated through complement. Protection from this

deletional process is afforded by MSC expression of factor H [Tu

et al., 2010] and other complement control proteins. However, whilst

MSC are protected from complement killing they are not inert to

other complement mediated activities. MSC can be recruited by the

complement anaphylatoxins C3a and C5a [Schraufstatter et al.,

2009], suggesting that signals initiated at sites of tissue damage

recruit MSC protected from regular innate deletion. Protection also

extends to cell mediated innate mechanisms as well; human MSC

suppress the proliferation, surface receptor expression and effector

functions of NK cells via prostaglandins and indoleamine

dioxygenase (IDO); however, this protection is limited as MSC

may be lysed under some circumstances by activated NK cells

[Spaggiari et al., 2008] (Fig. 1).

An emerging concept is that MSC are not only protected from

innate immune functions, but may contribute to shaping the

processes of inflammation and repair. Therefore MSC are properly

considered in the context of inflammatory responses. Monocytes

and macrophages are frontline immune effector cells capable of

destructive and lytic effects at sites of microbial insult, but can

produce a range of regenerative factors involved in repair. Recent

data suggest MSC may assist in coordination of these processes

[Ohtaki et al., 2008; Nemeth et al., 2009]. Likewise, MSC block

neutrophil function by suppressing the oxidative burst of resting

and activated neutrophils while preserving their phagocytic and

chemotactic functions [Raffaghello et al., 2008]. Furthermore, recent

in vivo data suggest that MSC also suppress inflammatory

eosinophil localisation in vivo [Kavanagh and Mahon, 2011]. Thus

MSC appear to be recruited by, but protected from, the principle

innate deletional mechanisms and suppress a range of inflammatory

pathways consistent with functions in co-ordinating the resolution

of inflammation and a transition to reparative processes.

Thus there is a conceptual dilemma in modelling MSC interaction

with the innate immune response. MSC need to be recruited to sites

Fig. 1. Summary ofMSC-immune interactions. MSCmodulate innate and adaptive immunity through cell contact and soluble factors such as prostaglandins (PG), interleukins

(IL)-6 and 10, Transforming growth factor (TGF)-b, and expression of the enzyme indoleamine 2,3,dioxygenase (IDO) resulting in immune suppression (blunt lines). MSC also

suppress immunity by modulating DC maturation and inducing regulatory T cells (arrows). Although MSC can suppress B cell responses either directly or via CD4þ Th

suppression, activation of B cells and antibody (Ig) stimulation can occur in some situations.
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of physiological insult, contribute to repair, and the resolution of

inflammation, but not interfere with the processes of immune

protection against pathogens. In this regard the differential

expression of Toll-like receptors (TLR) and the control of expression

has assumed a central importance [Pevsner-Fischer et al., 2007;

Liotta et al., 2008; Tomchuck et al., 2008]. MSC express a range of

TLR, and signalling via these receptors influences migration,

survival, differentiation and immunosuppressive capacity. MSC

immune modulation may be down-regulated by TLR3 and TLR4

ligands [Liotta et al., 2008; Romieu-Mourez et al., 2009] but

enhanced by IFN-g [English et al., 2007]. However, TLR ligation

alters the induction of cytokines and other inflammatory mediators

and under some conditions, further enhances MSC mediated

immune suppression [Tomchuck et al., 2008]. These findings

suggest a model where inflammation in the absence of pathogen

associated molecular pattern (PAMP) molecules stimulates or

‘licences’ MSC to promote regular (non-fibrotic) repair and dampen

inflammation (Fig. 2). In contrast, in the presence of PAMPS and

robust TLR signalling (e.g., tissue damage where pathogens are yet to

be cleared) MSC are less suppressive of inflammation and adopt a

more fibrotic character. If this hypothesis proves correct, MSC may

be particularly effective in suppressing chronic inflammation

associated with autoimmunity without impairing inflammatory

responses essential to antimicrobial defence.

MSC MODULATION OF DENDRITIC CELL FUNCTION

Dendritic cells (DC) are sentinel cells critical for the initiation of

antigen specific helper T cells. Host or graft derived DC can

contribute to graft rejection through either the direct or indirect

pathways of allorecognition, and MSC modulate DC development

and function in multiple ways [Nauta et al., 2006; Djouad et al.,

2007]. For example MSC appear to have differential effects on the

generation of conventional DC and plasmacytoid DC [Chen et al.,

2007]. Most importantly, MSC modulate conventional DC matura-

tion to induce a tolerogenic DC population. This involves down

modulation of DC expressions of MHC class II, the co-stimulatory

molecules CD40, CD80 and CD86, and prevention of the lymph node

homing chemokine receptor CCR7 [Djouad et al., 2007; English

et al., 2008; Li et al., 2008; Zhang et al., 2009]. Conversely allogeneic

MSC preserve DC expression of E-cadherin in vitro [English et al.,

2008], implying that MSC suppress lymph node homing (a pre-

requisite for T cell response initiation) and anchor the DC in the

peripheral tissues, a hypothesis that awaits testing in vivo. What is

clear is that MSC suppress DC antigen presentation, surface marker

switch, and homing capacity—the three cardinal signs of matura-

tion.

MSC also ‘re-programme’ the conventional myeloid DC response

to activating stimuli, converting pro-inflammatory responses (IL-

12, TNF-a) to anti-inflammatory cytokine production (IL-10)

[Zhang et al., 2009]. Functionally, DC that have encountered

MSC suppress the proliferation of activated T cells [Zhang et al.,

2009], influence the ratio of T cell subsets, and promote regulatory T

cells (Treg) [Li et al., 2008; Ge et al., 2009]. Once again it is likely that

different in vivo microenvironments and the specific conditions

encountered will influence the precise effect that MSC have on DC,

these variables are compounded by the heterogeneity of DC

populations used in such studies and these considerations may

explain the heterogeneity of data reported to date. Nevertheless,

Fig. 2. A hypothetical MSC switch. Inflammatory signals are essential to recruit MSC to sites of tissue damage, causing the stimulation or ‘licensing’ of enhanced function.

This may be influenced by the presence of pathogen associated molecular pattern molecules (PAMP) acting as a switch to activate Toll-like receptor (TLR) signalling. Under

inflammatory conditions in the absence of PAMP, MSC are licensed for anti-inflammatory, anti-fibrotic and reparative functions; however when TLR are engaged (such as during

active microbe driven pathology), a more fibrotic response is initiated, and MSC are less suppressive of inflammation.
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MSC clearly preserve DC immaturity, reduce the capacity for

inflammatory responses and limit the capacity of DC to initiate T cell

responses.

MSC SUPPRESSION OF ADAPTIVE IMMUNITY

The ability of MSC to suppress alloantigen driven proliferation in

mixed lymphocyte reactions was an early indication that these cells

disobey the conventional paradigm regarding adaptive immunity to

non-matched cells [Bartholomew et al., 2002]. This is in part

attributable to MSC production of prostaglandins [English et al.,

2007; Ryan et al., 2007]. However, the capacity of MSC to modulate

T cell responses is also dependent on the inflammatory micro-

environment in which MSC and T cells interact [Polchert et al.,

2008]. Unexpectedly, IFN-g does not break but rather enhances the

capacity of MSC to suppress T cell proliferation through induction of

IDO and other factors [English et al., 2007; Ryan et al., 2007; Ren

et al., 2008]. Indeed some studies suggest that there is a requirement

for IFN-g, and/or IL-1b in the activation of MSC immune

suppressive functions [Ren et al., 2008], a finding that parallels

repair in non-mammalian systems where inflammation is a pre-

requisite for regeneration [Young, 2004].

The differentiation of CD4þ T cells to specific subsets is also

influenced by MSC; with the mesenchymal cell skewing T cell

responses towards regulatory patterns of cytokine secretion and

concurrent suppression of Th1, Th2 or Th17 responses [Nemeth

et al., 2009; Rafei et al., 2009; Ghannam et al., 2010]. These data are

supported by elegant in vivo models of transplantation and

autoimmune disease where MSC alter T cell polarisation away

from the typical effector responses [Casiraghi et al., 2008; Ge et al.,

2009; Rafei et al., 2009; Kavanagh and Mahon, 2011]. Treg

themselves are candidate cell therapeutics but the ability of MSC to

induce these cells and also mediate repair suggests cell therapy

directed at the induction of tolerance in organ transplantation,

GvHD, and autoimmune disorders. It is well established that Treg

control alloreactive T cell responses [Nadig et al., 2010] and that

MSC can directly induce CD4þCD25þ FoxP3þ Treg [English et al.,

2009]. MSC-induced Treg have been shown to be donor specific in a

mouse model of cardiac allograft rejection [Casiraghi et al., 2008],

and human Treg induced by MSC can be isolated and suppress

allogeneic responses even when MSC are no longer present [English

et al., 2009]. Thus MSC suppression via Treg appears to operate by

both infectious tolerance and bystander suppressive mechanisms

[Griffin et al., 2010].

The signals involved in MSC induction of Treg have been

investigated by a number of groups. While cell contact in

combination with PGE2 and TGF-b are key factors [English

et al., 2009]; MSC secretion of HLA-G, IL-10 and LIF can also drive

Treg expansion [Selmani et al., 2008]. The induction of Treg by

allogeneic MSC has functional relevance in vivo, in a murine model

of allergic asthma the beneficial therapeutic effect of MSC therapy is

lost when Treg are depleted [Kavanagh and Mahon, 2011].

MSC-mediated immunomodulation occurs bymultiple redundant

pathways, and the induction of CD4þ Treg is paralleled by other

modulatory mechanisms. CD8þ regulatory cells can be induced by

MSC, and MSC can inhibit effector CD8þ cytotoxic T lymphocyte

(CTL) proliferation [Rasmusson et al., 2003; Ramasamy et al., 2008].

MSC were not lysed by CD8þ T cells [Rasmusson et al., 2003], and

soluble HLA-G played a partial protective role [Morandi et al., 2008].

However, there is heterogeneity in the findings with regard to the

effect of MSC on CTL killing of target cells. Rasmusson et al. [2003]

showed that inhibition of CTL mediated lysis in mixed lymphocyte

cultures was only effective when MSC were present at the beginning

of a 6-day culture whereas addition of MSC at day 3 or in the effector

cytotoxic phase had no effect on CTL function. Similarly, Ramasamy

et al. [2008] found that MSC did not inhibit CTL mediated lysis of

target cells in short-term assay systems. While it is difficult to

compare data across different experimental systems these findings

may indicate that MSC are more suppressive of CTL proliferation

and/or induction (of antigen-specific responses) than the effector or

lytic processes. This interpretation is consistent with the finding that

MSC therapy does not interfere with virus-specific T cell responses

[Karlsson et al., 2008].

Studies of the influence of MSC on B cell function have also

generated heterogeneous results [Corcione et al., 2006; Rasmusson

et al., 2007; Rafei et al., 2008; Traggiai et al., 2008; Asari et al.,

2009]. Co-culture of human MSC with purified B cell populations

under stimulatory conditions may inhibit B cell activation

(proliferation differentiation, immunoglobulin (Ig) production and

chemotaxis) [Corcione et al., 2006]. This suppression may be

mediated by alternatively cleaved CCL2 [Rafei et al., 2008], and the

PD1/PDL1 interaction [Schena et al., 2010]. In contrast, there are

consistent reports of MSC mediated stimulatory effects on in vitro-

activated B cells or plasma cells from healthy humans [Rasmusson

et al., 2007] and in patients with systemic lupus erythematosis (SLE)

[Traggiai et al., 2008]. The reasons for such apparently contradictory

results cannot be fully assigned to variability in the sources of MSC,

or the different antigen-dependent or polyclonal stimuli used. There

appears to be a genuine, if limited, MSC mediated stimulatory

phenomenon in vivo. The recent appreciation of CD4þ T follicular

helper cells and new techniques to track individual MSC to lymph

nodes in vivo [Steyer et al., 2009] may give some clues to the

biological phenomena operating in the B cell compartment in the

near future. Intriguingly it is possible that MSC are inducing the

phenomenon of split tolerance with differential effects on the T cell

and B cell compartments [Nash and Ashford, 1982], and systems

where T cell-independent B cell responses are studied may resolve

these issues.

DEFINING THE LIMITS OF MSC MEDIATED
SUPPRESSION

Allogeneic MSC have now been used therapeutically and safely in a

large number of human clinical trials [Griffin et al., 2010]. These

diverse studies can be informative in revealing whether the immune

suppressive properties of MSC are sufficient to overcome the diverse

processes of immune priming, and effector responses provoked by

allogeneic cells. Pre-clinical and clinical studies provide evidence

for a therapeutic benefit of allogeneic MSC, however, whether MSC

enjoy complete immune privilege in vivo seems less clear and this
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may impact on the clinical targets, and commercial benefits of MSC

therapies in the long-term. For example, the immunogenicity of

MSC following differentiation to chondrocytes, osteocytes or other

lineages is poorly characterised, and may be of importance for cell

therapy for myocardial, bone or joint diseases. In a rabbit model,

allogeneic MSC-derived osteogenic cells retained immunosuppres-

sive properties in vitro and functioned as osteoblasts in vivo without

sensitising to a subsequent MSC-donor-specific skin graft [Liu et al.,

2006]; however, recent data suggest that allogeneic MSC are

immunogenic on differentiation and this limits their benefit [Huang

et al., 2010]. It is also unclear whether current immunosuppressive

modalities for organ transplantation influence the therapeutic

effects of allogeneic MSC in vivo. The calcineurin inhibitor

tacrolimus reduces anti-donor antibody responses to allogeneic

MSC in a pig model [Poncelet et al., 2007]. Likewise, low-dose

sirolimus combined with allogeneic MSC therapy resulted in long-

term survival of MHC-mismatched heart transplants in mice [Ge

et al., 2009], suggesting cell therapy will not confound conventional

approaches. In many diseases, it is not known how long (or indeed

where) MSC need to persist in vivo in order to exert their beneficial

effects. For clinical applications that require permanent MSC

engraftment, even weak immunogenicity may confound successful

translation [Huang et al., 2010]. However, in conditions where

allogeneic MSC are used as agents of immune deviation to counter

an acute inflammatory condition or to ‘re-program’ autoimmunity,

then persistence may be less important and the suppressive features

of MSC may be sufficient to allow standardised allogeneic cell

therapy.

CONCLUDING REMARKS

The last decade has seen a remarkable shift in our appreciation of

the potential uses for MSC. First MSC were recognised as having

immunosuppressive properties, then the trophic (as opposed to

regenerative) effects became clear. These advances were followed by a

rapid delineation of the multiple pathways by which MSC modulate

immunity and somewhat unrealistic ambitions that MSC were an

immunological panacea. The field is now defining the limits of cell

therapy and the correlates of efficacy. The verymany ongoing clinical

trials of allogeneic MSC and MSC like cells [Griffin et al., 2010]

suggest that cell therapy for currently intractable conditions is a

realistic prospect. However, a number of issues remain to be resolved

such as the hierarchy of the immune suppressive functions of MSC

and the degree of redundancy that exists among themany suppressive

processes that have been identified to date. The limits of immune

modulation by allogeneic MSC are becoming clear, and these limits

will influence the choice of targets for cell therapy and help shape the

next generation of genetically modified or enhanced allogeneic MSC.
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