Role of the ancillary ligands on the stabilization of the imino-oxo tautomer of 1-methylcytosine in PtII complexes†

Bruno Longato,*a Diego Montagnera and Ennio Zangrandob

Received 20th October 2008, Accepted 24th December 2008
First published as an Advance Article on the web 12th February 2009
DOI: 10.1039/b818514j

The mixed nucleobases complexes cis-\{L\textsubscript{2}Pt\{1-MeTy(-H)\}(1-MeCy,N3)\}NO\textsubscript{3} (L = PPh\textsubscript{3}, \textit{1a}; PMePh\textsubscript{2}, \textit{1b}), containing the N(3)-deprotonated 1-methylthymine (1-MeTy(-H)) and the neutral 1-methylcytosine (1-MeCy) have been prepared and characterised. The compounds were obtained by reacting the hydroxo complexes cis-\{L\textsubscript{2}Pt(\textit{u}-OH)\}\textsubscript{2}(NO\textsubscript{3})\textsubscript{2}, with 1-methylthymine (1-MeTy), followed by the addition of 1 equivalent of 1-MeCy. In solution of DMSO, DMF or chlorinated solvents, \textit{1a} converts quantitatively into the isomer cis-\{L\textsubscript{2}Pt\{1-MeTy(-H)\}(1-MeCy,N3)\}NO\textsubscript{3} (\textit{2a}) containing the tautomeric form of the cytosine stabilized through the coordination at the N(4) atom, as shown by single-crystal X-ray analysis. The structural determination of \textit{2a} shows the presence in the unit cell of two crystallographic independent complexes having similar conformation, with a different orientation of the two nucleobases (head–head and head–tail) according to the presence of both isomers in solution. Complex \textit{1b}, having the less hindered PMePh\textsubscript{2} ligands, in DMSO solution, contains the tautomeric forms of the cytosine in equilibrium and the migration of the metal from the N(3) to N(4) site occurs only to a minor extent.

Introduction

The usual metal binding site of the model nucleobase 1-methylcytosine (1-MeCy) is the N(3) atom.1 However, the stabilization of the tautomeric form of this molecule through the coordination at the exocyclic N(4), in particular at PtII centers, have been well documented.2 In all these cases, the initial coordination of the metal occurs at the N(3) site, followed by the metal migration at the N(4) position. Such isomerisation implies the shift of one of the exocyclic NH\textsubscript{2} protons to the endocyclic N(3) atom of the cytosine ligand, as shown in Scheme 1.3

We have recently shown that the N(3)-bonded cytosine molecule in the mixed nucleobases complex cis-\{(PPh\textsubscript{3})\textsubscript{2}Pt\{1-MeTy(-H)\}(1-MeCy,N3\})4 (\textit{1a}) slowly rearranges into its more stable tautomeric derivative cis-\{(PPh\textsubscript{3})\textsubscript{2}Pt\{1-MeTy(-H)\}(1-MeCy,N4\}) (\textit{2a}).4

In this paper we report the structural characterisation of this compound by single-crystal X-ray analysis showing that the binding mode of the cytosine, previously established in solution by multinuclear NMR techniques, is maintained in the solid state. Moreover, the role of the PPh\textsubscript{3} ligands in the stabilization of the cytosine iminooxo tautomer has been further investigated by preparing the complex cis-\{(PMePh\textsubscript{2})\textsubscript{2}Pt\{1-MeTy(-H)\}(1-MeCy,N4\})+ (\textit{1b}), containing the less hindered PMePh\textsubscript{2} ligands. This simple change of the metal coordination sphere strongly effects the relative stability of the tautomeric forms of the cytosine ligand since the platination at the N(3) site appears largely predominant in a DMSO solution of \textit{1b}.

Experimental

Synthesis and materials

cis-\{(PMePh\textsubscript{2})\textsubscript{2}Pt(\textit{u}-OH)\}\textsubscript{2}(NO\textsubscript{3})4 and 1-MeCy4 were prepared as previously reported. cis-\{(PPh\textsubscript{3})\textsubscript{2}Pt\{1-MeTy(-H)\}(1-MeCy,N3\})4 NO\textsubscript{3} was prepared as described in reference [4] and the sample for X-ray analysis was obtained by slow diffusion of Et\textsubscript{2}O into a DMF solution of the compound, at room temperature. 1-MeTy and all the solvents (CH\textsubscript{2}Cl\textsubscript{2}, DMF, DMSO-d\textsubscript{6}, CDCl\textsubscript{3}, Et\textsubscript{2}O) were Aldrich products.

cis-\{(PMePh\textsubscript{2})\textsubscript{2}Pt\{1-MeTy(-H)\}(ONO\textsubscript{2})4. To a solution of cis-\{(PMePh\textsubscript{2})\textsubscript{2}Pt(\textit{u}-OH)\}\textsubscript{2}(NO\textsubscript{3})4 (48.6 mg, 3.6 \times 10-2 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (3 cm3) 1-MeTy (11.0 mg, 7.8 \times 10-2 mmol) was added, and the suspension stirred at room temperature for ca. 12 h. Addition of pentane (25 cm3) to the resulting solution afforded a white
solid which was isolated and dried under vacuum. Purification of the solid from CHCl₃ by vapour diffusion of Et₂O at room temperature, afforded crystals having the composition cis-[(PMePh₃)₂Pt{[1-MeTy(-H)](ONO)₃}·H₂O·1/4CH₂Cl₂ (50.4 mg, 85%).

We have recently shown that cis-[(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃ (2a) reacts with 1-MeCy, in CH₂Cl₂, DMF or CH₃CN, affording the isomer cis-{(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃, which is conformationally very similar, differing slightly in the orientation of the nitrato group. Addition of one equivalent of 1-MeCy leads to the mixed complex cis-{(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃ (1a), resulting in the immediate replacement of the nitrate ligand. The deprotonated 1-MeCy and the neutral 1-MeCy are both platinated at the N(3) atom. In a few days at room temperature in chlorinated solvents, DMSO or DMF, 1a converts into the isomer cis-{(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃ (2a), in which the cytosine is coordinated to the metal through the exocyclic N(4) atom, as shown by multinuclear NMR studies in solution and now confirmed in the solid state.

The X-ray structural determination of 2a shows the presence in the unit cell of two crystallographic independent complexes (A and B), disordered nitrate anions and a lattice water molecule. The metal ion has a square planar coordination geometry achieved through the phosphorous atoms and the nitrogen donors of the nuclease. The thyminato ligand is N(3) platinated and the nitrato group acts as monodentate ligand. Addition of one equivalent of 1-MeCy leads to the mixed complex cis-{(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃ (1a), resulting in the immediate replacement of the nitrate ligand. The deprotonated 1-MeCy and the neutral 1-MeCy are both platinated at the N(3) atom. In a few days at room temperature in chlorinated solvents, DMSO or DMF, 1a converts into the isomer cis-{(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃, in which the cytosine is coordinated to the metal through the exocyclic N(4) atom, as shown by multinuclear NMR studies in solution and now confirmed in the solid state.

The X-ray structural determination of 2a shows the presence in the unit cell of two crystallographic independent complexes (A and B), disordered nitrate anions and a lattice water molecule. The metal ion has a square planar coordination geometry achieved through the phosphorous atoms and the nitrogen donors of the nuclease. The thyminato ligand is N(3) platinated and the nitrato group acts as monodentate ligand. Addition of one equivalent of 1-MeCy leads to the mixed complex cis-{(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃ (1a), resulting in the immediate replacement of the nitrate ligand. The deprotonated 1-MeCy and the neutral 1-MeCy are both platinated at the N(3) atom. In a few days at room temperature in chlorinated solvents, DMSO or DMF, 1a converts into the isomer cis-{(PPh₃)₂Pt{[1-MeCy(-H)](ONO)₃}NO₃, in which the cytosine is coordinated to the metal through the exocyclic N(4) atom, as shown by multinuclear NMR studies in solution and now confirmed in the solid state.
Fig. 1 ORTEP drawing of complex cation A (head–tail orientation of the bases) with indication of the intramolecular H-bond and π–π stacking interactions.

Fig. 2 ORTEP drawing of complex cation B (head–head orientation, the cytosine and thymine bases are labelled as “d” and “u”, respectively).

map of the endocyclic N(1) and C(5) atoms. Based on the thermal parameters values and bond distances, we tentatively assigned the N(1) thymine atom in the two complexes corresponding to the two possible head-to-head and head-to-tail conformational isomers present in solution. In the head-to-head (hh) and head-to-tail (ht) conformations the methyl group on cytosine and thymine N1 nitrogen atoms lie on the same and on the opposite side, respectively, of the Pt–Pt plane (see Scheme 2). On the other hand, in both molecules the hydrogen at the cytosine N(3) atom (close to the metal) is indicative of a syn isomer.*

The bond lengths and angles in the two independent complexes (not highly accurate) fall in a wide range, comparable within 2–3σ (Table 1). These data indicate that the Pt–N(3)(thyminato) bond distances (2.095(8) and 2.045(9) Å) appear shorter with respect to the Pt–N(4)(cytosine) ones (2.110(9) and 2.089(8) Å). The coordination bond angle C(4c)–N(4c)–Pt(1) at cytosine is also very similar in the two complexes with a mean value of 127.1(9)°. The N(3)–Pt–N(4c) angle, 87.2(3)° and 86.5(3)° in complexes A and B, respectively, is narrower in contrast to the P(1)–Pt–P(2) one that average to 96.3°, likely induced by steric requirements. The thymine base is oriented almost normal to the coordination mean plane forming a dihedral angle of 82.88° (average value in the two complexes), while the cytosine plane is more bent, and its

Table 1 Coordination bond lengths and angles for the two independent complexes

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Complex A</th>
<th>Complex B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–N(3t)</td>
<td>2.095(8)</td>
<td>2.045(9)</td>
</tr>
<tr>
<td>Pt(1)–N(4c)</td>
<td>2.110(9)</td>
<td>2.089(8)</td>
</tr>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.274(3)</td>
<td>2.281(3)</td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.286(3)</td>
<td>2.272(3)</td>
</tr>
<tr>
<td>N(3t)–Pt(1)–N(4c)</td>
<td>87.2(3)</td>
<td>86.5(3)</td>
</tr>
<tr>
<td>N(3t)–Pt(1)–P(1)</td>
<td>88.9(2)</td>
<td>89.4(3)</td>
</tr>
<tr>
<td>N(3t)–Pt(1)–P(2)</td>
<td>174.8(3)</td>
<td>174.6(2)</td>
</tr>
<tr>
<td>N(4c)–Pt(1)–P(1)</td>
<td>175.9(2)</td>
<td>175.9(2)</td>
</tr>
<tr>
<td>N(4c)–Pt(1)–P(2)</td>
<td>87.9(2)</td>
<td>87.6(2)</td>
</tr>
<tr>
<td>P(1)–Pt(1)–P(2)</td>
<td>96.13(11)</td>
<td>96.48(12)</td>
</tr>
<tr>
<td>C(4c)–N(4c)–Pt(1)</td>
<td>127.2(9)</td>
<td>127.0(8)</td>
</tr>
</tbody>
</table>

* This journal is © The Royal Society of Chemistry 2009
ring forms a dihedral angle averaging to 78.6(2)°. This favours the formation of an intramolecular H bond between the N(3)–H and the thymine oxygen (see Fig. 1, mean values of N–O distances and N–H–O angles of ca. 2.86 Å and 161°, respectively).

The species are stabilized by two intramolecular π–π interactions given that two phosphine phenyl rings are oriented to stack with the model nucleobases. The centroid-to-centroid distance is shorter for the phenyl–thymine coupling, 3.394(9) Å with a dihedral angle of 14.9° (3.413(9) Å and 14.77° in complex B), in comparison to the values measured for the phenyl–cytosine pair, of 3.657(10) Å and 26.46° (3.887(9) Å, 30.39° in complex B). An additional intramolecular π–π interaction (not indicated in Fig. 1 and 2) is realized between two, almost parallel, phenyl groups.

The crystal packing evidences both the complexes, located near a center of symmetry, forming pairs of molecules connected by H-bonds occurring between the N(4)–H cytosine donor with the thymine oxygen O(2) of the symmetry related species, the N···O distance being 2.992 Å (Fig. 3 and Table 2). A similar arrangement is also detected for the other independent complex B involving N(4)–H with O(4) with a more labile interaction of 3.102 Å.

Fig. 3 Crystal packing showing the pairing of complexes about an inversion center with an indication of H-bonds (phosphine phenyl groups not shown for clarity).

Most of the structural features in complexes A and B are similar to those previously described in the complex cis-[(PPh₃)₂Pt(1-MeCy){1-MeCy(-H),N₄}]⁺, although in this species the coordination distances showed a reverse trend, being the Pt–N(3) bond length is significantly longer (2.100(3) Å) than the Pt–N(4a) one (2.061(4) Å). Similar to the structure reported here, a N(4)-H···N(3) hydrogen bond occurs between the bases along with intramolecular π–π stacking, confirming that the PPh₃ derivatives appear stabilized by these interactions.

On the other hand the different crystal packing of cis-[(PPh₃)₂Pt(1-MeCy){1-MeCy(-H),N₄}]⁺ (a polymer built by a H-bonding scheme) and of 2a (pair of molecules, see above) could explain the differences observed in the coordination distance values.

Characterisation of cis-[(PMePh₂)₂Pt{1-MeTy(-H)}- (1-MeCy,N')NO₃ (1b)

With a procedure analogous to that used for the PPh₃ derivative,⁴ the thyminate complex cis-[(PMePh₂)₂Pt{1-MeTy(-H)}(ONO₂)] was prepared. The ¹H and ³¹P NMR data of the new compound, in CDCl₃ and DMSO, strongly support a structure in which the nitrate group acts as monodentate ligand, as found in the PPh₃ analogue. Addition of one equivalent of 1-MeCy affords the mixed complex cis-[(PMePh₂)₂Pt{1-MeTy(-H)}(1-MeCy,N')NO₃ (1b). The spectroscopic analysis of the isolated product is consistent with the presence of the deprotonated 1-MeTy and the neutral 1-MeCy, both platinated at the N(3) atom. Due to the different orientations of the nucleobases with respect to the metal coordination plane (Scheme 3), two conformers are expected.

Table 2 Intra- and inter-molecular hydrogen bonds

<table>
<thead>
<tr>
<th>D–H</th>
<th>d(D–H)</th>
<th>d(H···A)</th>
<th><DHA</th>
<th>d(D···A)</th>
<th>A</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3c)-H3c</td>
<td>0.860</td>
<td>2.039</td>
<td>163.63</td>
<td>2.875</td>
<td>O(4t)</td>
<td>[-x,-y,-z+1]</td>
</tr>
<tr>
<td>N(4c)-H4c</td>
<td>0.860</td>
<td>2.188</td>
<td>155.45</td>
<td>2.992</td>
<td>O(2t)</td>
<td></td>
</tr>
<tr>
<td>Complex B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3d)-H3d</td>
<td>0.860</td>
<td>2.020</td>
<td>158.68</td>
<td>2.838</td>
<td>O(2u)</td>
<td>[-x+1,-y+1,-z+2]</td>
</tr>
<tr>
<td>N(4d)-H4d</td>
<td>0.860</td>
<td>2.310</td>
<td>153.18</td>
<td>3.102</td>
<td>O(4u)</td>
<td></td>
</tr>
</tbody>
</table>

Note: In molecule B the cytosine and thymine bases are labelled as “d” and “u”, respectively.
In this Scheme, the methyl group, bound to the N(1) atom in 1-MeCy and 1-MeTy, is oriented in opposite directions in the \(\text{ht} \) conformer. Accordingly, the \(^{31}\text{P} \) NMR spectrum of \(1\text{b} \) in CDCl\(_3\) is characterised by two partially overlapped AB multiplets, of relative intensities 1.5 : 1 (Fig. 4). Heterocorrelate \(^{31}\text{P} \) and \(^{15}\text{N} \) experiments indicate that the two phosphorous resonances at lower field, having \(J_{\text{PP}} = 3249 \text{ Hz} \), are attributable to the phosphine in a \text{trans} position to the thyminate ligand.

In the \(^{1}\text{H} \) NMR spectrum each nucleobase shows two sets of resonances having relative intensities of 1.5 : 1, whose attribution (see Experimental) was obtained through a COSY experiment. The assignments of the cytosine NH\(_2\) protons were obtained through inverse detected \(^{1}\text{H},^{15}\text{N} \) heteronuclear multiple bond coherence experiments (HMBC). In CDCl\(_3\), the NH\(_2\) resonances are observed at \(\delta = 8.69 \text{ and } 8.60 \text{ ppm} \) for the major conformer, and at \(\delta = 8.75 \text{ and } 8.63 \text{ ppm} \) for the other. As shown in Figure A in the ESI, the couple of proton signals at lower field correlate with the same N(4) nucleus (\(^{15}\text{N} \) at \(\delta = -271 \text{ ppm} \)), whereas the protons at \(\delta = 8.69 \text{ and } 8.60 \text{ ppm} \) correlate with the \(^{15}\text{N} \) signal at \(\delta = -270 \text{ ppm} \) (\(J_{\text{NH}} \) in the range 80–90 Hz).

The NMR spectra of \(1\text{b} \) in CDCl\(_3\), exhibit other very weak resonances, whose attribution remains uncertain. Similar results were obtained in DMSO-\(d_6 \) in which, however, complex \(1\text{b} \) appears in equilibrium with the tautomeric species \(\text{cis}-(\text{PMePh}_2)\text{Pt}(\text{1-MeTy}(-\text{H}))(\text{1-MeCy},N^4)^+ \text{ (2b)} \) as clearly indicated by the presence of a weak singlet at \(\delta = 10.50 \text{ ppm} \) attributable to the N(3)H proton of the N(4)-coordinated cytosine, and by a weak AX multiplet (\(\delta_p = -7.05 \text{ and } -8.42 \text{ with } J_{\text{PP}} = 23.4 \text{ Hz} \)) in the corresponding \(^{31}\text{P} \) NMR spectrum. The relative intensities of the signals indicate that the iminooxo tautomer is ca. 7% of the isomeric mixture and its concentration does not change after several weeks at room temperature.

Since the formal migration of the metal from N(3) to the N(4) site of the cytosine occurs quantitatively in \(1\text{a} \), but only to a minor extent in \(1\text{b} \), the nature of the ancillary ligands plays an important role. The stabilisation of the cytosine ligand in its unusual iminooxo tautomeric form is clearly favoured by the bulkier PPh\(_3\) molecules, probably for steric reasons. The platination of the cytosine at the N(4) position, in fact, permits less crowding around the metal being one of the two pyrimidinic rings relatively further away from the coordination center.

In this context, it is interesting to note that the diphosphine analogue, \(\text{cis}-(\text{dppf})\text{Pt}(\text{1-MeTy}(-\text{H}))(\text{1-MeCy},N^4)^+ \) (dppf = \text{1,1’-bis(diphenylphosphino)ferrocene}),\(^{\dagger}\) undergoes a similar rearrangement of the cytosine in DMF solution, with a large predominance of the \(\text{cis}-(\text{dppf})\text{Pt}(\text{1-MeTy}(-\text{H}))(\text{1-MeCy},N^4)^+ \) species present at the equilibrium. In that case, however, the solid isolated from the mixture turned out to be the starting complex.

Conclusion

The X-ray structure of the compound \(\text{cis}-(\text{PPh}_3)_2\text{Pt}(\text{1-MeTy}(-\text{H}))(\text{1-MeCy},N^4)^+\text{NO}_3 \) here reported represents the first example of a phosphino complex in which the neutral 1-MeCy exhibits N(4)-coordination to a metal centre. The two crystallographic independent molecules have been modelled taking into account the conformational isomers previously characterised in solution.\(^{4}\) These complexes appear stabilized by strong intramolecular \(\pi-\pi \) interactions between the pyrimidinic rings and the phosphine phenyl substituents, allowing the formation of intramolecular hydrogen bonds.

The peculiar properties of the PPh\(_3\) ligands in the stabilisation of the cytosine molecule in the iminooxo form stem from the
following observations: (i) the PMe complex, cis-[(PMe₃)₂Pt(1-MeTy(-H))(1-MeCy,N³)]⁺, in solution slowly rearranges into the polynuclear cytosinate species cis-[(PMe₃)₂Pt(1-MeCy(-H))]ₙ⁺ (n = 2, 3) and free 1-MeTy⁺; (ii) the tautomeric equilibrium is largely shifted toward the usual N(3)-coordination for PMePh₂ derivatives, in particular in chlorinated solvents; (iii) the opposite holds for the dppf analogue of 1a. However, in spite of its thermodynamic stability, we were unable to isolate the iminooxo species, cis-[(dpff)Pt(1-MeTy(-H))(1-MeCy,N³)]⁺. 12

References