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Abstract

We introduce an alternative version of the Fama–French three-factor model of stock returns together
with a new estimation methodology. We assume that the factor betas in the model are smooth nonlinear
functions of observed security characteristics. We develop an estimation procedure that combines
nonparametric kernel methods for constructing mimicking portfolios with parametric nonlinear regression
to estimate factor returns and factor betas simultaneously. The methodology is applied to US common
stocks and the empirical findings compared to those of Fama and French.
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1. Introduction

In a series of important papers, Fama and French (hereafter denoted FF), building on earlier
work by Banz (1981), Basu (1977), Rosenberg, Reid, and Lanstein (1985) and others,
demonstrate that there have been large return premia associated with size and value. Size is
defined as market capitalization; value is defined as the book-to-price ratio or a related valuation
ratio such as the earnings-to-price ratio. These size and value return premia are evident in US data
for the period covered by the CRSP/Compustat database (FF, 1992), in earlier US data (Davis,
1994), and in non-US equity markets (FF, 1998; Hodrick et al., 1999).
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FF (1993, 1995, 1996, 1998) contend that these return premia can be ascribed to a rational
asset pricing paradigm in which the size and value characteristics proxy for assets' sensitivities to
pervasive sources of risk in the economy. Haugen (1995) and Lakonoshik, Shleifer, and Vishny
(1994) argue that the observed value and size return premia arise from market inefficiencies rather
than from rational risk premia associated with pervasive sources of risk. They argue that these
characteristics do not generate enough nondiversifiable risk to justify the observed premia.
Similarly, MacKinlay (1995) argues that the return premia are too large relative to the return
volatility of the factor portfolios designed to capture these characteristics, and this creates a near-
arbitrage opportunity in the FF model. Daniel and Titman (1997) argue that the factor returns
associated with the characteristics are partly an artifact of the FF factor model estimation
methodology. Hence the accuracy and reliability of FF's estimation procedure is a critical issue in
this research controversy.

FF (1993) use a simple approach to estimate their factor model. They sort securities according
to the securities' size and value characteristics and construct two-dimensional fractile portfolios.
They use differences between the returns on large-size and small-size fractile portfolios (adjusted
for the value characteristic) as an estimate of the size factor. Analogously, the difference between
high book-to-price and low book-to-price fractile portfolios, adjusted for the size characteristic,
serves as an estimate of the value factor. They use a capitalization-weighted index as a proxy for
the market factor. Although this method is intuitively plausible and computationally simple, there
is to our knowledge no rigorous statistical theory to justify it with regard even to consistency.
Furthermore, there is no obvious way to generate consistent standard errors for these and
subsequent estimates that takes correct account of all sampling error. Also, in order to estimate the
factor betas, a set of time-series regressions must be run with the estimated factor returns as
explanatory variables. This gives rise to an errors-in-variables problem in the estimated factor
betas.

In this paper we develop an alternative methodology to describe the same phenomenon as do
FF. We introduce a semiparametric characteristic-based factor model in which the factor betas are
smooth functions of a small number of characteristics. The model can be viewed as a
semiparametric generalization of Rosenberg (1974, Section 3), where a linear such model is
considered. The flexible nonlinearity we allow is important to capture the sort of generality
implicit in the FF approach and evident in the data. The estimation methodology has two steps.
The first step uses nonparametric kernel methods to construct factor-mimicking portfolios
associated with a set of chosen values of the characteristics. The second step uses parametric
nonlinear regression, with the collection of first step portfolio returns as the independent variable,
to estimate the factor returns and factor beta functions. This new methodology facilitates a range
of approximate (asymptotic) statistical results not available with FF's procedure. It gives
simultaneously estimated, consistent and asymptotically normal estimates of the factor returns
and the factor beta functions, and approximate standard errors for all estimated parameters. We
also give an interpretation of our method as a variant of FF's portfolio construction approach.

The model is applied to US equities using the book-to-price ratio and the market value of
equity as characteristics and the results are compared to those of FF. Our results are qualitatively
similar to those of FF but with some improvements in model fit. For both characteristics we find
that the relationship between the characteristic and associated factor beta is monotonic but not
linear.

Section 2 presents the new estimation methodology. Section 3 applies it to the data. Section 4
summarizes the paper and suggests some further extensions and applications of the approach.
Proofs are given in the Appendix.
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2. Methodology

2.1. Description of the factor model

We assume that there is a large number of securities, indexed by i=1,…, n, and asset returns
are observed for a fixed number of time periods t=1,…, T. We assume that the following
characteristic-based factor model generates returns:

rit ¼ fut þ
XJ
j¼1

gjðCijÞfjt þ eit; ð1Þ

where rit is the return to security i at time t; fut; fjt are the factor returns; gj(Cij) the factor betas, Cij

the security characteristics, which are assumed for simplicity not to vary over time, and εit are the
mean zero asset-specific returns whose properties we discuss further below. The factor returns fjt
are linked to the security characteristics by the characteristic-beta functions gj(·), which map
characteristics to the associated factor betas. We assume that each gj(·) is a smooth time-invariant
function of characteristic j, but we do not assume a particular functional form. This a special case
of the unrestricted factor model (Connor and Korajczyk, 1993) rit ¼

PJ
j¼1 bij fjt þ eit; where βij

are factor loadings, and generalizes the linear model considered in Rosenberg (1974, Section 3)
where bij ¼

P
k djkCik þ uij: We also note that Eq. (1) constitutes a weighted additive

nonparametric regression model for panel data, where the factors fjt are ‘parametric weights’
and the functions gj(·) are univariate nonparametric functions. Some discussion of additive
nonparametric models can be found in Linton and Nielsen (1995).

The market factor fut captures that part of common return not related to the security
characteristics; all assets have unit beta to this factor. This factor captures the tendency of all
equities to move together, irrespective of their characteristics. It is a common element in panel
data models, see Hsiao (2003, Section 3.6.2).

There are two indeterminacies in the characteristic-beta functions gj(·), reflecting the usual
rotational and scale indeterminacies of factor models. The first indeterminacy is additive. One can
add an arbitrary constant a to any of the functions gj(·) and subtract afjt from fu, and the
predictions of the returns model (1) are unchanged. To eliminate this indeterminacy, we impose
the condition gj(0)=0 for all j, without loss of generality.

The second indeterminacy is multiplicative. One can multiply any gj(·) by any non-zero
constant and fj by the reciprocal of the same constant and the predictions of the returns model (1)
are unchanged. We assume that gj(1)≠0 for each j. Without loss of generality we set gj(1)=1.

The identification constraints gj(0)=0 and gj(1)=1 are given intuitive content by the choice of
units of Cij. We rescale the raw characteristics linearly so that the cross-sectional average of Cij

equals zero and the cross-sectional standard deviation equals one. The constraint gj(0)=0 means
that the factor return fu is the common-factor-related return of an asset with “average”
characteristics. The constraint gj(1)=1 means that over the interval [0, 1] measured in units of
standard deviation the increase in factor beta equals one.1
1 An alternative normalization is to assume that E[gj(Cij)]=0 and var[gj(Cij)]=1: This normalization has certain
advantages from a statistical point of view, but is harder to interpret.



697G. Connor, O. Linton / Journal of Empirical Finance 14 (2007) 694–717
2.2. Kernel-based portfolio weights for factor-mimicking portfolios

In this subsection we present a new technique for creating factor-mimicking portfolios, based
on nonparametric kernel methods. Our purpose in developing this new technique is the estimation
of our factor model, but there are other potential applications. For example, the technique could be
used for the construction of benchmark portfolios in event studies or in performance measurement
of managed portfolios.

Our new technique is founded on the earlier work of FF (1993) and we very briefly summarize
their approach. FF rank securities by two characteristics, size and book-to-price (BTP), and
perform a bivariate sort of the securities into fractiles. They use three fractiles for BTP and two for
size, so the bivariate sort gives a total of six fractiles: large size/high BTP, large size/medium BTP,
large size/low BTP, small size/high BTP, small size/medium BTP, small size/low BTP. They
group the assets into capitalization-weighted portfolios of the securities within each fractile. For
each characteristic, the average difference between the returns on a collection of high and low
fractile portfolios, screened to preserve a common beta to the other characteristic, serves as the
estimates of the factor returns associated with that characteristic. Specifically they define:

Size factor return ¼ 1=3½ðlarge size=high BTP portfolio return

− small size=high BTP portfolio returnÞ
þ ðlarge size=medium BTP portfolio return

− small size=medium BTP portfolio returnÞ
þ ðlarge size=low BTP portfolio return

− small size=low BTP portfolio returnÞ�

ð2Þ

Book� to� price factor return
¼ 1=2½ðlarge size=high BTP portfolio return − large size=low BTP portfolio returnÞ

þ ðsmall size=high BTP portfolio return − small size=low BTP portfolio returnÞ�
ð3Þ

Our new technique can be viewed as a kernel-based variant of FF's portfolio construction
technique. Instead of target ranges for the characteristics (such as high, medium and low), we
create a set of portfolios, each one designed to capture one from a grid of target characteristic
vectors. Instead of capitalization-weighting for the portfolios, we use kernel-weighting, where the
kernel weights are constructed to trade-off portfolio diversification against the distance of each
asset's characteristic vector from the target vector.

We choose M distinct target values for each of the J characteristics, where the values must
include the two values used to set the scale of the factors, zero and one, and these are listed first
and second. Let cm,j; m=1,…, M, j=1,…, J denote the chosen values, which are assumed to lie in
the interior of the support of the random vector C. The grid of target characteristic vectors consists
of all H=MJ combinations of the M chosen target values over the J characteristics. Now collect
all the target vectors together, and denote a typical member of this set by ch=(c1

h,…, cJ
h)⊺, where

h=1,…, H. Thus each ch is a J-vector of target characteristics, where a given h corresponds to a
unique vector (m1,…, mJ) and vice versa. Collect the observed characteristics for firm i into J-
vectors Ci=(Ci1,…, CiJ)

⊺, i=1,…, n. One can also take a different number of target values for
each characteristic but we avoid this extra complication for notational reasons.
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Let ωhi be ‘localizing’ weights, depending only on the data through Ci, that concentrate on
values close to the vector ch, and define the local weighted portfolio return as

̂rht ¼ ̂rtðchÞ ¼
Xn
i¼1

xhirit: ð4Þ

From the perspective of finance, this can be viewed as the return on a well-diversified portfolio
designed to have (approximately) the target characteristics ch. From the perspective of statistical
theory, r̂ht can be interpreted as a nonparametric estimator of the conditional expectation of rit
given Ci=c

h. To construct the weights ωhi we use the local linear smoother approach (Fan and
Gijbels, 1996). This method is favoured because of its attractive statistical properties like good
boundary behavior and less dependence on the covariate distribution. Let k be a (kernel) density
function with finite second moment, and let K(u1,…, uJ)=∏j=1

J k(uj) be the product kernel; we take
k to be the standard Gaussian density function. Then define the least squares criterion function

Xn
i¼1

½rit−a0−a⊤ðCi−chÞ�2KððCi−chÞ=bÞ; ð5Þ

where b=b(n) is a scalar bandwidth, while a0 and a=(a1,…, aJ) are local intercept and local slope
parameters. Let â0, â be the minimizing values, which are explicit linear functions of rit of the form
(4). We let r̂ht=â0, and the weights ωhi in Eq. (4) are correspondingly defined. There is an explicit
formula for these weights given in Fan and Gijbels (1996). They are similar in some respects to the
weights for the standard kernel estimator: they sum to one, but they need not be all positive. In
practice however most weights are positive for reasonable sample sizes and the magnitude of
negative weights when they do arise is small. One could avoid negative weights altogether by
fitting instead a local constant procedure.

In our empirical application we vary bandwidth with the location ch and time period t,
typically enlarging bandwidths out in the tails where there is less data. For simplicity, we ignore
this in the theoretical derivation and treat the bandwidth as fixed over ch. It would also be possible
to have a multivariate bandwidth that differs across the characteristics.

Now we show that the kernel-based portfolio returns converge to linear combinations of factor
returns, with asymptotically normal and independent residuals. To do this, we apply a result from
kernel regression theory, see Masry (1996). For each t define the function rtðcÞ ¼
fut þ

PJ
j¼1 gjðcjÞfjt for any J-vector c=(c1,…, cJ)

⊺. Using Eq. (1) it follows immediately that

rit ¼ rtðCiÞ þ eit: ð6Þ
For a given t, Eq. (6) can be viewed as a multivariate nonparametric regression problem. Our

kernel-based portfolio return for characteristic combination h is the local linear estimate of rt(c
h).

In order to describe the statistical properties of r̂ht we make some assumptions about the data
generating process, although it should be noted that we do not need a full specification. We only
rely on large cross-section asymptotics, and so do not need to fully specify the time series
dependence. We assume that the observed characteristic J-vectors of the assets Ci, i=1,…, n are
independent and identically distributed across i. Let p(c) denote the marginal density function of
Ci evaluated at the point c; and let C denote the support of Ci. We further suppose that

Assumption A. The vector εi=(εi1,…, εiT)
⊺ is independently distributed across i=1,…, n, and

satisfies E(εiεi
⊺|Ci=c)=diag{σ1

2(c),…, σT
2 (c)} with probability one, where each function σt

2(·) is
continuous at all points ch∈C. Furthermore, for some δ>0, E[|εit|

2 + δ]<∞ for all t. The
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regression functions rt(·) are twice continuously differentiable at all points ch∈C, while the
density function p is continuous and strictly positive at each ch∈C. The bandwidth satisfies
b=λn−1/(J+4) for some λ with 0<λ<∞.

Define for each t, ch,

r2ht ¼ tKt2
2
r2t ðchÞ
pðchÞ ; stðchÞ ¼ 1

2
l2ðkÞ

XJ
j¼1

A2rt
Ac2j

ðchÞ; ð7Þ

where tKt2
2 ¼

R
KðuÞ2du and l2ðkÞ ¼

R
kðtÞt2dt: Then let r̂

¯
, r
¯
be the stacked TH×1 vectors

containing all the r̂ht and r(ch), and let τ
¯
be the vector containing all the τt(c

h) in the same order.

Lemma 1. Suppose that Assumption A holds. Then as n→∞,

ðnbJ Þ1=2ð ̂rP− rP−b2sPÞ⇒Nð0;XÞ; where X¼diagfr2htg�ℝTH�TH :

The central limit theorem for r̂t(c
h) is coming from the cross-sectional independence of the

error terms; this assumption is sufficient but not necessary. Indeed in Connor and Korajczyk
(1993) a weaker type of cross-sectional dependence, i.e., a mixing condition, was allowed.
Lemma 1 carries over to this case provided the cross-sectional mixing coefficients decline fast
enough. To obtain the joint asymptotic distribution over all time points we have assumed that εit is
a martingale difference sequence with respect to time, so uncorrelated over time, but we do not
rule out other sorts of temporal dependence in εit like GARCH effects. This assumption is
consistent with the usual efficient market assumptions, and seems like a reasonable assumption to
make in this context.2

Using Lemma 1, it is easy to create a parallel to FF's factor return estimates shown in Eqs. (2)
and (3). Consider two target characteristic vectors ch and ch′ which are equal in all components
except that ch has characteristic j value 1 whereas ch′ has characteristic j value 0. Using the
scaling assumptions gj(1)=1 and gj(0)=0, it is easy to see that the difference in the target factor
betas of the two associated kernel-based portfolios equals one for factor j and zero for all other
factors. Applying Lemma 1, the return difference between these two portfolios provides a
consistent, asymptotically normal estimate of factor return j. From among the H combinations of
characteristics, there are MJ−1 pairs that differ only in characteristic j and have values 0 and 1
respectively for this characteristic. Hence, for each factor j, we have MJ−1 asymptotically
independent estimates of the time t factor return. In parallel with FF, we could use the average
across these pairs of matched portfolio returns as the factor return estimate, that is,

f̃ jt ¼
1

MJ−1

XH
h¼1

ðdhj;1−dhj;0Þ ̂rht; ð8Þ

where the dummy variable δhj,1(δhj,0) equals one if mimicking portfolio h has target characteristic
one (zero) for factor j and equals zero otherwise. The factor return estimates are consistent and
asymptotically normal, as described in Lemma 2. Define for j=1,…, J and t=1,…, T:

sfjt ¼ 1
MJ−1

XH
h¼1

ðdhj;1−dhj;0ÞstðchÞ ; r2jt ¼ tKt2
2

1
MJ−1

XH
h¼1

ðdhj;1−dhj;0Þ2 r
2
t ðchÞ
pðchÞ :
2 In the presence of autocorrelation in εit, the estimates are still asymptotically normal but the asymptotic variance
matrix is no longer diagonal.
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Lemma 2. As n→∞; for j=1,…, J and t=1,…, T:

ðnbJ Þ1=2ð f̃ jt−fjt−b2sfjtÞ⇒Nð0;r2jtÞ: ð9Þ

The joint asymptotic distribution of the estimated factors can also be obtained; typically there
is an asymptotic covariance between f̃ jt and f̃ ks. The FF-type estimates described in Lemma 2
have two weaknesses. First, the estimate of each factor return uses information from only a subset
of the kernel-based portfolios and are inefficient as we show below. Second, the estimator only
gives estimates of the factor returns, not the factor betas. In the next section we present an
alternative estimator that uses information from all the kernel-based portfolios simultaneously and
produces joint estimates of all the factor returns and of all the factor beta functions evaluated at the
target characteristics. The corresponding estimator f̂ jt is more efficient than f̃ jt.

2.3. Joint estimation of the factor beta functions and factor returns using nonlinear regression

In this subsection we propose an alternative estimate of the factor returns to (8), and provide an
estimate of the factor betas. We use the kernel-based portfolio returns described in the last
subsection as dependent variables in a nonlinear regression system. The unknown parameters in
this parameterized system are the realized factor returns and the beta functions evaluated at the
target characteristics. The regression is nonlinear because it includes products of factor returns
and factor betas. The estimator of the factor returns is guaranteed to be more efficient than Eq. (8).
The estimation method is a version of minimum distance discussed in Rothenberg (1973); we
apply these ideas from parametric estimation to our semiparametric problem.

Recall from the last subsection the definition of the kernel portfolios covering all combinations
of the M target characteristics for each of the J factors over all T time periods. The returns on all
of these kernel-based portfolios can be written as a pooled regression with H ‘cross-sectional’
observations (in this case ‘cross-sectional’ means across the kernel portfolios not across
individual assets) and T time series observations:

̂rht ¼ fut þ
XJ
j¼1

gjðchj Þfjt þ ̂uht ð10Þ
̂uht ¼
XJ
j¼1

Xn
i¼1

xhigjðCijÞ−gjðchj Þ
( )

fjt þ
Xn
i¼1

xhieit: ð11Þ

Note that in Eq. (10) the nonparametric functions gj(·) are each evaluated at M points,
corresponding to each target point ch. The factor model scaling assumptions gj(0)=0 and gj(1)=1
imply that g1j=0 and g2j=1 for each j. We treat the remaining (M−2)J components of {gmj} as
parameters to estimate, along with the (J+1)T factor returns { fut, fjt}. Let θ denote the q=(M−2)
J+(J+1)T-vector of free parameters arranged in some consistent order, and let θ0 be the true
vector. We rewrite Eq. (10) as a nonlinear regression equation

̂rht ¼ fut þ
XJ
j¼1

XM
m¼1

gmjdhj;m fjt þ ̂uht; ð12Þ

where δhj,m is a dummy variable equaling one if mimicking portfolio h has target value cmj for
factor j, and zero otherwise. Viewed as a regression equation, there are a fixed finite number of
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observations HT and q unknowns, where we assume that q<HT; the error terms in the regression
are asymptotically independent across h, and are individually of small order in probability.

For a chosen parameter vector θ, define the predicted values rhtðhÞ ¼ fut þPJ
j¼1

PM
m¼1 gmjdhj;m fjt; and let r

¯
(θ) be the HT×1 vectors containing the observations rht(θ).

Then define θ̂, as any minimizer of the minimum distance criterion

QnðhÞ ¼ ð ̂rP− rPðhÞÞ⊤ ̂V ð ̂rP− rPðhÞÞ ð13Þ

over θ∈ℝq: The weighting matrix V̂ is a symmetric and positive definite HT×HT matrix, for
example V̂= IHT. The weighting is included to take account of error heteroscedasticity; it is
allowed to be estimated from the data. The criterion function Qn(θ) is a quartic polynomial in the
parameters, and under reasonable conditions will have a global minimum, which will be unique
on a suitably chosen compact set, which we denote by Θ. This enables us to use an iterative
weighted least squares procedure to find the minimum. The actual algorithm we use exploits the
bilinear structure of the regression function (12) and is described in the Appendix.3

We next show the statistical properties of the estimator θ̂. Define the HT×q and q×q matrices

CðhÞ ¼ ArPðhÞ
Ah

; WðhÞ ¼ CðhÞ⊤VCðhÞ; ð14Þ

and let Ψ0=Ψ(θ0) and Γ0=Γ(θ0). Now we show that the least squares estimator is consistent and
asymptotically normal.

Theorem 1. Suppose that the weighting matrix V̂→pVas n→∞, where V is a symmetric positive
definite matrix: Then, the least squares estimate defined by Eq. (13) exists with probability
tending to one and θ̂→pθ0. Suppose that Ψ0 is a nonsingular matrix and that θ0 is an interior
point of Θ. Then, as n→∞,

ðnbJ Þ1=2ð ̂h−h0−b2W−1
0 C⊤

0VsÞ⇒Nð0;W−1
0 C⊤

0VXVC0W
−1
0 ÞuNð0;SÞ:

Remarks. 1. The asymptotic covariance matrixΣ in Theorem 1 can be consistently estimated by

̂S ¼ ̂W
−1 ̂C ̂V ̂X ̂V ̂C

⊤ ̂W
−1
; ð15Þ

where Ψ̂=Ψ(θ̂) and Γ̂=Γ(θ̂), while Ω̂=diag{σ̂ht
2} is an estimate of Ω, where

̂r2ht ¼ tKt2
2
r2t̂ ðchÞ
p ̂ðchÞ

with ̂pðchÞ ¼ n−1b−J
Pn

i¼1 KððCi−chÞ=bÞ and ̂r2t ðchÞ ¼
Pn

i¼1 xhir2it−ð
Pn

i¼1 xhiritÞ2: Standard er-
rors for the factors and the betas are then obtained from the square root of the corresponding
diagonal element of Σ̂ /nbJ. Thematrix Ψ̂ can be quite large– in our application it is 1422×1422–
and so computing Ψ̂−1 can be time consuming and subject to numerical rounding error. In the
3 We may wish to use only subperiod or even single time period information to estimate θ: In the single period case we
would minimize a criterion (r̂t− rt(θ))⊺ V̂t(r̂t− rt(θ)) with respect to θ, of course, the degree of overidentification reduces
(and hence efficiency worsens) but on the other hand this approach is more robust to time series issues like structural
change etc.
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appendix we discuss how to compute the inverse Ψ̂−1 exploiting the sparsity structure in the Ψ
matrix, thereby avoiding the direct inversion of a very large matrix.

2. When V=Ω−1; we have

S ¼ ðC0X
−1C⊤

0 Þ−1: ð16Þ

The asymptotic variance in Eq. (16) is minimal amongst this class of estimators. The class of
estimators includes all those asymptotically linear combinations of the vector r̂

¯
and so f̃ jt is

included in this class of estimators as a very special case. It follows that f̂ jt has a smaller
asymptotic variance than f̃ jt. The efficient estimator can be implemented in practice by taking
V̂= Ω̂−1, where Ω̂is the estimator described above. Note that even in this case the matrixΣ is not
diagonal, which says that estimation of the factors affects in variance terms estimation of the
factor betas and vice versa.

3. We have assumed for the asymptotic normality that the matrixΨ0 is non-singular. In general
it is difficult to provide primitive conditions to ensure that Ψ0 is a nonsingular matrix. However,
in the special case of homoskedastic errors a sufficient condition is that the vectors g1,…, gJ are
not collinear with themselves or with a vector of ones.

4. We have estimated all the unknown quantities at the rate (nbJ)−1/2, which is the standard rate
for J-dimensional nonparametric regression. However, the quantities fjt can in principle be
estimated at rate n−1/2 since they are effectively parametric, and the quantities gj(·) can in
principle be estimated at rate (nb)−1/2 since their arguments are only one-dimensional, see Stone
(1980) and Bickel, Klaassen, Ritov, and Wellner, (1993). The slower rate we have is due to the
fact that we have taken a grid set of cardinality H that does not increase with sample size n. The
theory can be extended to allow H=H(n)→∞ and hence yield improvements in rate. We have not
done this here because the dataset is so large and so: (a) we are limited in computational time as to
how many grid points to average over, (b) the variance is in any case small.

3. Empirical analysis

3.1. Data

Except for the addition of recent years, our data is essentially identical to that in FF (1993). The
monthly returns data covers the period July 1963 to June 2002. To be included in the data set
during a given year (July to June) a security must have a complete monthly return record during
that year and a recorded book value of equity and market value of equity in the preceding June.
All returns are measured in excess of the Treasury Bill rate, i.e., the monthly Treasury Bill rate is
subtracted from each security's raw return. The size (log of market value) and value (log of the
book to market ratio) of each security is fixed for the July-to-June period and comes from the
preceding June. The security returns and equity market values come from the Center for Research
In Security Prices monthly database; the equity book values are from Compustat.

Table 1 shows some descriptive statistics for the data: the number of securities in the annual
cross-section, and the first four cross-sectional moments of the two characteristics. To save space
the table only shows five representative years (years 1, 10, 20, 30 and 39 of the sample) and 39-
year averages; the complete table of all individual years is available from the authors. The size
characteristic is leptokurtic and slightly negatively skewed relative to the normal distribution, and
the opposite holds for the value characteristic. There is fairly strong negative cross-sectional
correlation between the two characteristics, large firms tending to have lower book-to-price ratios



Table 1
Distributions of the security characteristics

Year (five
selective
years
shown)

Number
of
securities

Log(market value) Log(book-to-price ratio) Correlation
between the
characteristics

Mean Variance Skewness Excess
kurtosis

Mean Variance Skewness Excess
kurtosis

7/63–6/64 963 3.79 3.44 0.314 −0.373 −0.506 0.781 −4.377 64.024 −0.282
7/72–6/73 2163 4.21 2.89 0.372 −0.218 −0.477 0.606 −0.575 0.820 −0.350
7/82–6/83 4002 3.62 3.64 0.342 −0.342 −0.163 0.777 −0.959 2.133 −0.063
7/92–6/93 4661 4.47 4.15 0.366 −0.242 −0.716 1.133 −1.198 4.522 −0.165
7/01–6/02 4738 5.40 4.58 0.330 −0.170 −0.615 1.050 −0.284 0.829 −0.490
Average

over all
years

3737 4.23 3.63 0.355 −0.221 −0.550 0.823 −1.023 4.691 − .234

For five selected years (the first, last, and three intermediate years at ten-year intervals) the table shows the number of
firms, the first four cross-sectional moments of the unstandardized size and value characteristics, and the cross-sectional
correlation between the two characteristics. The last row shows the average across all 39 annual cross-sections.
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than small firms. The number of firms in the cross-section increases substantially over the 39 year
time period.

3.2. Implementation

To begin estimation of the model we need to choose a set of target characteristics, a kernel
function, and a bandwidth-setting procedure.

The choice of a set of target characteristics is analogous to FF's choice of a set of sort
portfolios. FF use three different sets of sort portfolios: for factor estimation 3×2=6 portfolios,
and for test assets, either 5×5=25 or 10×10=100 portfolios.

For both the size and value characteristics we use target values in the range −2.00 to +3.00
inclusive, spaced at intervals of 0.5, giving eleven target values for each of the two characteristics
and therefore 11×11=121 combinations of the two. The asymmetric range of −2.00 to 3.00 was
chosen to reflect the importance of very large capitalization stocks and (to a lesser extent) high
“value” stocks in the Fama–French theory. FF (1992, 1993) also use asymmetric rules in the
construction of their sort portfolios, for the same reason. The grid space between target points
needs to be narrow enough to give a rich set of characteristic targets yet wide enough so that there
is not excessive overlap between the target portfolios.

We chose a product Gaussian kernel throughout. The advantage of this kernel is that it is very
smooth and produces nice regular estimates, whereas, say the Epanechnikov kernel produces
estimates with discontinuities in the second derivatives. The product kernel is satisfactory
provided the bandwidths are scaled to the units of the different covariates, as they are. The
bandwidth choice involves a trade-off between having kernel portfolios whose constituent asset
characteristics more closely match the target values (smaller bandwidth) versus having portfolios
with lower asset-specific variance (larger bandwidth). Awider bandwidth gives a more diversified
portfolio. A narrower bandwidth minimizes the overlap between nearby portfolios, and ensures
that the characteristics of each portfolio closely match their target value.

After experimenting with a variety of bandwidth setting methodologies, we decided that a
simple rule-of-thumb procedure like Silverman (1986) worked best. For each target vector in each
year, we calculated the sample density of the root-mean-squared differences between all the



Fig. 1. Bandwidths related to target points of the size characteristic. The figure shows the 4719 bandwidths (one for each of
the 121 kernel portfolios for each of the 39 years) sorted by the target value of the size characteristic.
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sample characteristic vectors and the target vector. For each target vector in each year we set the
bandwidth equal to the fifth percentile of this sample density. This implies that ninety-five percent
of the observations are at least one bandwidth away from the target vector, where distance is
measured by root-mean-square. This simple procedure guarantees that the bandwidth is narrow
where the data set is locally more densely populated (e.g., near the median values of the two
characteristics) and wider where the data set is locally sparse (e.g., near the extreme values of the
characteristics). It is rather like a smooth nearest neighbor's bandwidth taking 5% of the data in
Fig. 2. Bandwidths related to target points of the value characteristic. The figure shows the 4719 bandwidths (one for each
of the 121 kernel portfolios for each of the 39 years) sorted by the target value of the value characteristic.



Table 2
Estimated characteristic-beta functions

Coefficients Standard Errors of the Coefficients

Standardized characteristic Size factor betas Value factor betas Size factor betas Value factor betas

−2.0 −1.36683 −2.58113 0.344935 0.843173
−1.5 −1.2521 −2.13233 0.327413 0.730035
− .1.0 −0.98441 −1.53518 0.288445 0.583113
− .5 −0.54118 −0.79766 0.227904 0.411341
−0 0 0 0 0
.5 0.542428 0.652333 0.126254 0.223383
1.0 1 1 0 0
1.5 1.326042 1.142241 0.15248 0.282011
2.0 1.524904 1.21038 0.171697 0.298094
2.5 1.63813 1.247786 0.183848 0.309015
3.0 1.705015 1.270598 0.191337 0.316954

The table shows the estimated factor betas for each point on the selected grid of characteristic values. The model is
estimated by weighted nonlinear regression using a three-factor model that is based on two characteristics (value and size).
The factor betas are set to zero and one for standardized characteristic values zero and one (respectively) as an
identification condition of the nonlinear regression model.
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each marginal window. The bandwidths range from 0.237 to 3.32 with a mean of 1.11. Figs. 1
and 2 display the chosen bandwidths and relate them to each of the two characteristics.

3.3. The characteristic-beta functions

Table 2 shows the estimates of the characteristic-beta functions at the specified target
characteristic values, and standard errors for each estimate. Note that the standard errors of the
beta estimates are corrected for the joint estimation error in the factor returns, unlike e.g.,
FF (1993). The standard errors tend to be larger in the tails, where the data is sparser. The
characteristic-beta functions are displayed in Figs. 3 and 4. Recall that both characteristic-beta
Fig. 3. Characteristic-Beta function for the size characteristic. The figure displays the relationship between the size factor
betas and the standardised size characteristic; see Table 2 columns one and two.



Fig. 4. Characteristic-Beta function for the value characteristic. The figure displays the relationship between the value
factor betas and the standardised value characteristic; see Table 2 columns one and three.

706 G. Connor, O. Linton / Journal of Empirical Finance 14 (2007) 694–717
functions are set to zero at zero and to one at one, as identification conditions. The pointwise
functions from target characteristics to factor betas are monotonically increasing at all points in
both markets. The uniformly positive slope of the functions has implications for analysis of both
the size effect and the value effect in equity markets. It implies that the marginal return premia
should apply across the whole spectrum of firms, not just to low-capitalization firms or to firms
with very low book-to-price ratios. This is because, under a standard factor beta pricing model,
the difference in return premia between two firms is proportional to the difference in factor beta.

The characteristic-beta function is relatively flat at the high end of the value characteristic, so
the marginal increase in return premia is small over this region. FF (1993, 1996) argue that the
value factor is related to an economy-wide “financial distress” risk in capital market. Note
however that we find that the value factor beta function has a steeper slope below zero (‘low-
value’ firms) than above zero (‘high-value’ firms). This seems to imply that the value factor betas
capture something other than just sensitivity to financial distress. The marginal increase in
sensitivity to financial distress for a marginal change in the book-to-price ratio should be fairly
small for ‘low-value’ firms.

3.4. The estimated factors

In this subsection we analyze the estimated factors, and compare them to the factor portfolio
returns from the original FF procedure. The FF factors are publicly provided (including updates
for recent history) by Ken French.4 In addition to the value-weighted market index used by FF, we
also include the equally-weighted market index for comparison purposes. Table 3 shows the
correlation matrix for all the factors. There is a very high positive correlation between the pairs of
equivalent factors estimated by the two methods; these are highlighted using bold font. Our unit-
beta factor has extremely high correlation with the equally-weighted market index and high, but
not extremely high, correlation with the value-weighted market index. Brown (1989) shows
4 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ for the datasets and details on their construction.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/


Table 3
Correlations between the factor returns

fu fs fv EWMKT VWMKT SMB HML

fu 1 −0.539 −0.254 0.998 0.840 0.698 −0.220
fs 1 0.014 −0.523 −0.069 −0.781 0.093
fv 1 −0.288 −0.430 −0.140 0.789
EWMKT 1 0.849 0.700 −0.255
VWMKT 1 0.304 −0.371
SMB 1 −0.252
HML 1

The table shows the time-series contemporaneous correlation coefficients between our three factors, fu, fs, fv (unit-beta
factor, size factor, and value factor), the equally-weighted market index, EWMKT, and the three factors provided by Ken
French, VWMKT, SMB and HML (capitalization-weighted market index, small-minus-big size factor, and high-minus-
low value factor). The correlations are calculated over the 468 month sample period and each has an asymptotic standard
error of 0.046.
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analytically that the dominant statistical factor in a large asset market is approximately identical to
the equally-weighted index return; Connor and Korajczyk (1988) show empirically that this near-
equivalence holds for US equity returns with statistically-derived factors. Given these earlier
findings, the extremely high correlation between our unit-beta factor and the equally-weighted
index return is not surprising.

Note that our “size” factor has a negative correlation with the SMB factor since “size” in our
model is a positive monotonic transformation of capitalization and therefore is defined oppositely
from “Small Minus Big” as used by FF. This is merely a sign reversal and has no substantive effect.

An estimated factor return is a linear combination of the sample of asset returns and so it can be
expressed as a vector of “portfolio weights,” although these weights will not typically sum to one,
and will differ each period. It is possible to compare the FF factors and our factors by examining
the portfolio weights which underlie the estimated factors. Figs. 5–8 compare the “portfolio
weights” underlying our size and value factors and the analogous FF factors, for the middle month
Fig. 5. Size factor portfolio weights related to size characteristic. The figure shows the portfolio weights of the size factor
plotted against the size characteristic, for the middle month of the sample (November 1982).



Fig. 6. Value factor portfolio weights related to value characteristic. The figure shows the portfolio weights of the value
factor plotted against the value characteristic, for the middle month of the sample (November 1982).
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of the sample (November 1982). Figs. 5 and 6 show the two “size” factor portfolios as functions
of the size characteristic and Figs. 7 and 8, the two “value” factor portfolios as functions of the
value characteristic. Other functional representations (each factor portfolio as a function of the
other characteristic, and the market and zero-beta portfolios as a function of each characteristic)
are available from the authors. Note that our estimation methodology results in much more
diversified portfolios than the FF method (in this regard it is important to take note of the differing
scales in the figures). Due to the capitalization weighting, the FF portfolios are dominated by the
relatively small number of high-capitalization securities.

The remaining analysis in this subsection is based on a simple time-series regression
formulation: each time-series of returns in a panel of asset returns is regressed on an intercept and
the time-series returns of three factors:

rit ¼ ̂ai þ ̂bi1 f1t þ ̂bi2 f2t þ ̂bi3 f3t þ ̂eit; ð17Þ

whether f1, f2, f3 are either our estimated factors or the three FF factors. For the panel of
dependent variables rit we consider individual securities, portfolios sorted by the characteristics,
and industry portfolios. The performance of the factor model can be judged either by its ability to
explain the time-series of asset returns (small values of ε̂it), or its ability to explain the cross-
section of mean returns (α̂i≈0). We will consider both of these criteria.

We use six sets of dependent variables in the analysis. The first set is the full collection of
individual asset returns. The next two sets are 100 portfolios sorted by size and value, provided by
Ken French. The first of these uses value-weighting and the second equal-weighting in the
portfolio constructions.5 The fourth and fifth are sets of 30 value-weighted and equally-weighted
industry portfolios, again provided by Ken French. The last set is the 121 kernel portfolios which
came from the first stage of our estimation procedure.
5 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ for details on the construction of these size and value
sorted portfolios.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/


Fig. 7. Fama–French SMB portfolio weights related to size characteristic. This figure shows the Fama–French SMB
(Small Minus Big) portfolio weights plotted against the size characteristic, for the middle month of the sample (November
1982).

709G. Connor, O. Linton / Journal of Empirical Finance 14 (2007) 694–717
Table 4 shows average R-squared statistics and mean-square residuals from the time-series
regressions (17) using the six sets of dependent variables. For the individual assets the time-series
regressions are over the 12-month subperiods used to define the balanced panels of assets returns,
and the “averages” are over both assets and years. For the remaining five sets of dependent
variables the time-series regression are over the full 39-year period.

The factors estimated by our method outperform the Fama–French factors in terms of
explanatory power for four of the six cases, the exceptions being the value-weighted sort
portfolios and value-weighted industry portfolios. Using value-weighted portfolios on both sides
of (17) induces an errors-in-variables bias, since the idiosyncratic return of the small number of
Fig. 8. Fama–French HML portfolio weights related to value characteristic. The figure shows the Fama–French HML
(HighMinus Low) portfolio weights plotted against the value characteristic for the middle month of the sample (November
1982).



Table 4
Factor model fit using time-series regressions

Average adjusted R2 Average residual variance

CL FF CL FF

Individual assets .2030 .1935 .02471 .02557
100 Value-weighted sort portfolios .7629 .7639 .00279 .00275
100 Equally-weighted sort portfolios .7943 .7683 .00269 .00278
30 Value-weighted industry portfolios .5135 .5212 .00119 .00117
30 Equally-weighted industry portfolios .6446 .6133 .00088 .00102
121 Kernel portfolios .9817 0.9035 7.742e-05 4.147e-04

The table reports the average fit from sets of time-series regressions with asset returns as dependent variables and three
factors plus intercept as independent variables. We use two alternative sets of factors in the regressions. The columns
labelled CL uses the three factors fu, fs, fv (unitbeta factor, size factor, and value factor) derived by our model. The columns
labelled FF use the three factors provided by Ken French, VWMKT, SMB and HML (capitalization-weighted market
index, small-minus-big size factor, and high-minus-low value factor). The first set of dependent variables are all the
individual asset returns. The next two sets of dependent variables are 100 value-weighted and equally-weighted sort
portfolios (doubly sorted by capitalization and book-to-price) provided by Ken French. The next two are 30 value-
weighted and equally-weighted industry portfolios also provided by Ken French. The sixth and final set of dependent
variables are the 121 kernel portfolios derived in our model. Both R2 and residual variance are degrees-of-freedom
adjusted.
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very high-capitalization securities appears nonnegligibly in both the factor return estimates and in
the asset returns. It is notable how much more well-diversified are the 121 kernel portfolios
compared to the 100 Fama–French value-weighted and equally-weighted sort portfolios. This is
demonstrated by the much high average R̄ 2 values when the kernel portfolios are regressed on the
factor returns.

In the first panel of Table 5, we re-estimate Eq. (17) for individual securities after dropping the
intercept and each factor separately. The difference between the adjusted R-squared statistic with
and without a given factor is a simple descriptive measure of the marginal explanatory power of
the factor. We show the average of these differences across all assets. The intercept has no
explanatory power: due to the adjustment for degrees of freedom it actually lowers average R̄ 2

and the average residual variance. In both cases (our factors and the FF factors), each of the three
factors has nonnegligible explanatory power, with the market factor by far the strongest, then the
value factor and last the size factor. We use a small sample t-test of the significance of each
coefficient, and calculate the proportion significant at 95% confident.

In the next five panels we repeat this regression exercise for the other five sets of assets. We can
reach no clear conclusions from the comparisons of the aggregated intercept tests: the estimation
and interpretation of the intercepts in this type of factor-return regression is notoriously difficult.
The ability to reject the hypothesis that the intercepts are zero in some cases partly reflects the
very high power of these tests (note the very high R̄ 2 as shown in Table 4) rather than the
magnitude of the estimated intercepts. On the other hand, we can state definitively that each of the
three factors shows a pervasive influence on each set of asset returns, with the same ordering of
relative influence as for individual assets: market, value, and size. This holds both for the FF
factors and our new estimated factors.

4. Summary

This paper describes a characteristic-based factor model along the lines of the Fama and
French (1993) three-factor model, and develops a new estimation methodology that is a mixture



Table 5
Model fit after deleting each explanatory variable

Variable
deleted

Decrease in
average
adjusted R2

Increase in average
residual variance

Proportion of
assets rejecting
the restriction at
95% confidence

CL FF CL FF CL FF

Individual assets: Intercept .0068 .0126 −2.813e-04 −6.379e-05 .0484 .0528
Market .1109 .0783 2.114e-03 1.528e-03 .2057 .1601
Value .0262 .0303 7.792e-04 1.106e-03 .0885 .0909
Size .0130 .0136 3.838e-04 6.179e-04 .0696 .0715

100 Value-weighted sort portfolios: Intercept .0025 .0101 1.028e-04 1.342e-04 .2500 .8600
Market .5928 .4647 2.074e-03 1.630e-03 .9800 1.000
Value .0967 .1148 3.007e-04 5.005e-04 .9300 .8600
Size .0307 .0427 1.613e-04 1.660e-04 .8600 .8800

100 Equally-weighted sort portfolios: Intercept .0024 .0094 1.113e-04 1.316e-04 .2800 .8600
Market .6182 .4835 2.240e-03 1.760e-03 .9800 1.000
Value .1028 .1167 3.351e-04 5.341e-04 .9100 .8600
Size .0299 .0495 1.587e-04 1.888e-04 .8700 .8500

30 Value-weighted industry portfolios: Intercept .0017 .0066 5.517e-06 2.171e-05 .1389 .5833
Market .4448 .4168 1.540e-03 1.410e-03 .8333 .8333
Value .1105 .0179 3.412e-04 7.091e-05 .8333 .6944
Size .0127 .0193 4.939e-05 6.519e-05 .4167 .6667

30 Equally-weighted industry portfolios: Intercept .0010 .0036 4.339e-06 1.414e-05 .3333 .5278
Market .4250 .3001 1.700e-03 1.190e-03 .8333 .8333
Value .0146 .1551 4.474e-05 6.803e-04 .5556 .8056
Size .0122 .0345 5.186e-05 1.243e-04 .5278 .7222

121 Kernel portfolios: Intercept .0013 .0092 5.623e-05 3.629e-04 .6860 .8843
Market .6575 .5043 2.183e-03 1.635e-03 1.000 1.000
Value .0946 .1859 2.852e-04 8.153e-04 .9835 .9422
Size .0347 .0496 1.831e-04 1.557e-4 .9669 .7107

The table shows the change in the results for sets of time-series regressions described in Table 4 when one of the
independent variables is deleted. Both R2 and residual variance are degrees-of-freedom adjusted. The last two columns
summarize the results from the set of tests of the hypothesis that the true coefficient on the associated independent variable
is zero.
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of parametric and nonparametric methods. The methodology has two steps. The first step uses
nonparametric kernel methods to construct mimicking portfolios for a chosen grid of values of the
characteristics. The second step uses parametric nonlinear regression to estimate factor betas and
factor returns simultaneously, using the collection of first-stepmimicking portfolio returns as the
dependent variable. This new methodology allows for a range of approximate (asymptotic)
statistical results not available with Fama and French's procedure.

The model is applied to essentially the same dataset as in Fama and French (1993) and the
results are compared. In terms of explanatory power the factors estimated by our method and
those from Fama and French perform comparably, with some evidence for marginal
outperformance by our factors. The mimicking portfolios created by our procedure appear
much better diversified than the bivariate size and value sort portfolios provided by Fama and
French.

Unlike the original Fama and French model, our model gives explicit estimates of the
relationship between security characteristics and the associated factor betas. We find that for both
value and size these relationships are monotonic, but not linear.



712 G. Connor, O. Linton / Journal of Empirical Finance 14 (2007) 694–717
There are a number of possible extensions and applications of our findings. Daniel, Grinblatt,
and Titman (1997) provide a framework for using characteristic-based benchmarks in
performance measurement. Our new methodology for the construction of characteristic-based
mimicking portfolios has obvious applications there. Constructing normal performance
benchmarks in event studies is a closely related problem, and our new methodology might
prove useful.

We have assumed that the characteristic-beta functions are constant through time; it would be
interesting and worthwhile to extend the model to allow time-varying betas; both cyclically
(possibly related to business cycle indicators) and in terms of secular trends.

Appendix A

A.1. Proofs

Proof of Lemma 1. Following the arguments of Masry (1996), it can be shown that for each t, ch,

̂rtðchÞ−rtðchÞ ¼
Xn
i¼1

x̃hieit þ b2stðchÞ þ opðn−2=ðJþ4ÞÞ;

where ω̃hi are the weights
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duY0 as nYl for any chpchVby dominated convergence, and p

(c) is bounded away from zero and bounded: The independence across time follows from the fact
that εit are uncorrelated, since for t≠ s, E½Pn

i¼1 x̃hieit
Pn

i¼1 x̃hieis� ¼ E½Pn
i¼1 x̃

2
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using the law of iterated expectation. Therefore we have for any vector aaRJ ; ðnbJ Þ1=2a⊤ð ̂rP−
rP −b2sPÞ⇒Nð0; a⊤XaÞ, which by Cramèr's theorem implies the result. □

Proof of Lemma 2. Consider two combinations ch and ch′ with j values 1 and 0 respectively and
cj′
h=cj′

h′ for all j′≠ j . Using the definition of rt(·) gives rt(c
h)− rt(ch′)= fjt. The final estimate of

fjt is the average of these differences across all M
J−1 such h, h′ pairs. The distribution limit of a

fixed finite linear combination of sequences of random variables is the linear combination of
the distribution limits. By Lemma 1 each sequence has a normal distribution limit and they
are asymptotically independent. Using the formula for the variance of a linear combination of
independent random variables gives (9). □
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Proof of Theorem 1. Note that given r̂ht and using the definition of rht(θ), Qn(θ) is a multivariate
polynomial in θ. Also note that Qn(θ) is a sum of squared terms times some positive weights and
therefore is nonnegative everywhere. Hence it has a well-defined minimum (which need not be
unique). Since Qn(θ) is a multivariate polynomial it has derivatives to every order, and so when
evaluated at any minimum the first-order condition

A

Ah
Qnð ̂hÞ ¼ 0: ð19Þ

must hold. The local uniqueness of the minimizers follows from the fact, discussed below, that the
variables δ are not collinear, and are of dimensions less than or equal to the number of
observations.

Now we show that θ̂→ pθ0. SinceQn(θ) is nonnegative and has a minimum at θ̂ we have 0≤Qn

(θ̂)≤Qn(θ0). Note that Qn(θ0)→
p0 as n→∞, by virtue of the consistency of the kernel estimator at

each point, and thereforeQn(θ̂)→
p0.Wemust show that this implies θ̂ → pθ. Recall the definition of

the target characteristic vectors ch and consider the h′ such that ch′=0J. For each t consider the term in
Qn(θ̂) associated with h′, and note that 0≤ v̂t(c

h′)(rh′t−r̂ h′t) 2≤Qn(θ̂) with probability tending to one,
because v̂t(c

h′) has a positive probability limit, and therefore (rh′t− r̂h′t)2→ p0. Using the definitions of
r̂h′t and rh′t gives ( f̂ ut− fut−ûh′t)2→ p0, and since ûh′t→

p0 this implies f̂ ut→
pfut. Next consider h′

associated with the target characteristic vector such that cj
h′=1 and cj′

h′=0 for all j′≠ j. Using that
quadratic functions of probability limits converge we have (r̂h′t−rh′t)2→ p0. Using the definitions of
r̂ h′t and rh′t gives ( f̂ ut+ f̂ jt− fut− fjt−ûh′t)2→ p0, and since ûh′t→

p0 and f̂ ut→
pfut this implies f̂ jt→

pfjt.
Last, we show that r̂hj→

prhj for m=3,…, M, j=1,…, J. Consider h′ associated with the target
characteristic vector such that cj

h′=rhj and cj′
h′=0 for all j′≠ j. By the same argument as in the last

paragraph we have ( f̂ ut+ r̂hj f̂ jt− fut−rhj fjt−ûh′t)2→ p0. By assumption there is at least one t such that
fjt≠0 and using this t we have ( f̂ ut+ r̂hj f̂ jt− fut−rhj fjt−ûh′t)2→ p0 implies r̂hj→

prhj.
Rewriting Qn(θ) in matrix form and taking the derivative with respect to θ⁎, evaluated at θ̂
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Note that this vector of derivatives equals the zero vector by Eq. (19) as proven above.
Consider a first-order Mean Value expansion of r_ (θ̂) around θ0

P
r ̂h ¼

P
rðh0Þ þ C⊤ðh̃Þð ̂h−h0Þ; ð21Þ

where θ̃ lies between θ̂ and θ0. The appropriate value of θ̃may differ for each element of θ̂ (see
Davidson and Mackinnon (1993) p. 154). Note that r

¯
ˆ− r

¯
(θ0)=û, where û is the vector with

typical element ûht. Inserting Eq. (21) into Eq. (20), setting it equal to zero, then cancelling and
rearranging terms, gives Γ (θ̃)⊺V̂Γ (θ̂)(θ̂−θ0)−Γ (θ̂)Vû=0. Because Γ(θ) is a fixed continuous
function and θ̃→ pθ0 and V̂→ pV, we obtain

W0ðnbJ Þ1=2ð ̂h−h0Þ−C0V ðnbJ Þ1=2 ̂u ¼ opð1Þ:

By Lemma 1, (nbJ)1/2(û−b2τ
¯
) is asymptotically normal with zero mean vector and covariance

matrix Ω. If the difference in the probability limit of two random variables is zero then their
distributional limits are the same (White, 1984, Lemma 4.7, p. 63). Using that Ψ0 is invertible
completes the proof. □
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A.2 Estimation algorithm

Here we describe the estimation algorithm we use to compute θ̂ =(g
¯
ˆ ⊺, f̂ ⊺)⊺, where f̂ =( f̂ u

⊺, f̂ 1
⊺,

…, f̂ J
⊺)⊺ and g

¯
ˆ =(g

¯
ˆ 1
⊺,…,g

¯
ˆ J
⊺)⊺ with f̂ j, g

¯
ˆ j being T×1 and (M−2)×1 vectors respectively. It is an

iterative weighted least squares procedure, a variant on partitioned regression. It is designed to
exploit the bilinear structure and to thereby reduce computational time.

We first rewrite the estimating equations to give some insight into its algebraic structure. We
introduce the quantities of interest: f=( fu

⊺, f1
⊺,…, fJ

⊺) ⊺ and g=(g1
⊺,…, gJ

⊺)T with each fj being T×1
and each gj being M×1: Define the corresponding unrestricted elements of g by g

¯
=(g

¯
1
⊺,…, g

¯
J
⊺)⊺,

where each g
¯
j is an (M−2)×1 vector. This removes the zero and one components of g which are

fixed for identification purposes and not estimated parameters. We can also represent the factor
information as f⁎=( f 1⊺,…, f T⊺)⊺ where ft=( fut, f1t,…, fJt)

⊺ are (J+1)×1 parameter vectors, so that
f⁎ is just a rearrangement of f.

Suppose that the target values are arranged according to the following order {(c1,1,…, c1,J),…,
(cM,1,…, c1,J),(c1,1,…, c2,J),…}, i.e.,

PrtðhÞ ¼
fut þ f1tg1ðc1;1Þ þ f2tg2ðc1;2Þ þ : : :

v
fut þ f1tg1ðcM ;1Þ þ f2tg2ðc1;2Þ þ : : :

v

2
664

3
775;

where r
¯t
(θ) is the H×1 containing the rht(θ) in consistent order. Define the H×1 vector Pu=

(⊗JiM)= iM⊗⋯⊗iM and the H×M matrices of zeros and ones:

P1 ¼ ð�J−1iM Þ � IM ;P2 ¼ ð�J−2iM Þ � IM � iM ; N ; PJ ¼ IM � ð�J−1iM Þ:
Then

P
rðhÞ ¼ fu � Pu þ

XJ
j¼1

fj � ðPjgjÞ;

where we stack the T vectors r
¯t
(θ) on top of each other to give r

¯
(θ). Note that there are the

identification restrictions fixing the first two values of each gj; these can be written as

gj ¼ d
P
gj þ e2;

where e2 is anM−2×1 vector with one in its second position and zero else and δ=(0, IM−2)
⊺ with

0 representing a (M−2)×2 vector of zeros.
Combining these equations we have the following conditional linear relationships:

P
rðhÞ ¼ fu � Pu þ

XJ
j¼1

fj � ðPjgjÞ ¼ ðIT � PuÞfu þ
XJ
j¼1

ðIT � ðPjgjÞÞfj ¼ Xgf ð22Þ

¼ ð fu � IH ÞPu þ
XJ
j¼1

ð fj � IH ÞPjd
P
gj þ

XJ
j¼1

ð fj � IH ÞPje2 ¼ Xf
P
g þ cf ; ð23Þ

where Xg= IT⊗ (Pu, P1g1,…,,PJgJ) is HT×(J+1)T, while Xf =(( f1⊗ IH)P1δ,…,( fJ⊗ IH)PJδ) is
HT×(M−2)J and cf ¼ ð fu � IH ÞPu þ

PJ
j¼1ð fj � IH ÞPje2 is HT×1: We exploit this structure in

our estimation algorithm. This is:
1. Choose starting values for f [0]. We use the consistent estimates described in Lemma 2.
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2. Estimate g_ in Eq. (23) by weighted least squares using V̂, Xf [0]= (( f 1
[0] ⊗ IH)P1δ,…, ( f J

[0] ⊗
IH)PJδ),

P
g½1� ¼ ðX⊤

f ½0�
̂VXf ½0� Þ−1X ⊤

f ½0�
̂V ð
P
̂r−cf ½0� Þ ð24Þ

3. Estimate f in Eq. (22) by weighted least squares using V̂ , Xg[0]= IT ⊗ (Pu, P1g1
[0],…, PJgJ

[0]),
where gj

[0] =δg
¯
j
[0] +e2,

f ½1� ¼ ðX ⊤
g½0�

̂VXg½0� Þ−1X⊤
g½0�

̂V
P
̂r ð25Þ

4. Continue steps 2 and 3 until convergence criteria is met, e.g., until

th½rþ1�−h½r�t < ϵ

for some prespecified small ϵ>0: Call the final value θ̂.
Note that correct standard errors for f̂ , ĝ cannot be obtained from the above algorithm directly;

in the next section we discuss a strategy for obtaining standard errors at minimal computational
cost.

A.3 Asymptotic variance and standard errors

Here we discuss the form of the asymptotic variance, with a view to computing standard errors.
We must find the derivatives of r(θ) with respect to the components of θ and thence the quadratic
forms Ψ0 and Σ. We work with a rearrangement of θ, given by θ=( g

¯
⊺, f⁎

⊺)⊺, where f⁎=(( f
1)⊺,…,

( f T)⊺)⊺.
Define the generic TH×TH diagonal weighting matrix V. Then

W0 ¼ APr

Ah⊤
V
APr

Ah
¼

A
P
r

A
P
g⊤

V
A
P
r

A
P
g

A
P
r

A
P
g⊤

V
A
P
r

Af⁎
A
P
r

Af ⊤⁎
V
A
P
r

A
P
g

A
P
r

Af ⊤⁎
V
A
P
r

Af⁎

2
6664

3
7775u W

P
ggW

P
gf⁎

Wf⁎
P
gWf⁎ f⁎

" #
; ð26Þ

where W
P
gg is (M−2)J×(M−2)J, Ψf⁎ f⁎ is (J+1)T×(J+1)T and Ψg

¯
f⁎ , Ψf⁎g

¯
have consistent

dimensions. The asymptotic variance depends on the inverse of this large matrix, which we now
seek to find. In practice, Ψf⁎ f⁎ has larger dimensions than W

P
gg , but happily there is an analytical

formula for Ψf⁎ f⁎
−1 , which we can exploit. We use the partitioned inverse formula

W−1
0 ¼

ðW
P
gg−W

P
gf⁎W

−1
f⁎f⁎

Wf⁎P
gÞ−1−ðW

P
gg−W

P
gf⁎W

−1
f⁎f⁎

Wf⁎
P
g Þ−1W

P
gf⁎W

−1
f⁎f⁎

−W−1
f⁎f⁎Wf⁎

P
g ðW

P
gg−W

P
gf⁎W

−1
f⁎f⁎Wf⁎

P
g Þ−1W−1

f⁎f⁎ðI þWf⁎
P
g ðW

P
gg−W

P
gf⁎W

−1
f⁎f⁎Wf⁎

P
g Þ−1W

P
gf⁎W

−1
f⁎f⁎Þ�:2

664

The general strategy is to compute Ψf⁎f⁎
−1 analytically, and then let the computer calculate the

inverse ðW
P
gg−W

P
gf⁎W

−1
f⁎f⁎Wf⁎

P
g Þ−1 and everything else, as these are of smaller dimensions.

We have

A
P
r

Afu
¼ IT � Pu;

A
P
r

Afj
¼ IT � Pjgj

� �
;

A
P
rt

Af s
¼ G if t ¼ s

0 else
;

�



716 G. Connor, O. Linton / Journal of Empirical Finance 14 (2007) 694–717
being HT×T, HT×T, and H×(J+1) matrices respectively. Here, G=(Pu, P1g1,…, PJgJ). It
follows that:

Wf⁎f⁎ ¼
A
P
r

Af ⊤⁎
V
A
P
r

Af⁎
¼

G⊤V1G 0

0 . .
.

0 G⊤VTG

2
64

3
75

so that

W−1
f⁎f⁎ ¼

ðG⊤V1GÞ−1 0

0 . .
.

0 ðG⊤VTGÞ−1

2
64

3
75:

This just involves computing T inverses of matricesG⊺VtG each with dimensions (J+1)×(J+1).
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