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We *use an asymn*fiG c_& p?&@$ ~~~nentc terhniqrw tc Pctimate t-&p xy~~oiv~ &pm= inffwc- r--‘-- __--I.__ _____ 
mg asset returns and to test the restrictions imposed by static and intertemporal e@ib&un 
versions of the arbitrage pricing theory (APT) on a multivariate regre&on tnodel, me cm@&$!! 
techniques allow for fairly arbitrary time variation in risk premiums. We Gnd that the AR?_ 
provides a -better description of the expected returns on assets & thg ca$%L asset oricing mode! 
(CAPM). However, some statistically reliable m&pricing of assets by the APT rem&s. 

In this paper we estimate and test the restrictions implied by an equilibrium 
version of Ross’s arbitrage pricing theory (APT). We estimate the return 
factors using the asymptotic principal components technique first suggested by 
Chamberlain ar& Rothschild (1983) and extended by Concur and Korajczyk 
(1986). We test tie cross-sectional restrictions imposed by the APT with a 
variety of multivariate procedures. 

Section 2 describes the APT specification that we test. We use both the 
standard, s&atic version of the APT and an intertemporal version developed in 
Connor and Korajczyk (1987). In this second version there is one factor that 
has a unit beta for every security. The static version does not impose this 
unit-beta restriction. 
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In section 3 we outline the asymptotic principal components technique that 
we use to estimate the pervasive economic factors and a new iterative version 
that is more efficient than the one-step procedure described in Connor and 
Korajczyk (1986). These factor estimates are valid in a model with time-vary- 
ing risk premiums, as long as asset betas are constant. ‘Vte estimate the return 
factors and relate them to mrne macroeconomic time series suggested as 
possible sources of pervasive economic risk by Chen, Roll, and Ross (1986). 
We also analyze the estimation error in the factors using our technique and 
discuss the relationship between our method and standard factor analysis. 

Iri section 4 we describe our testing procedures and empirical results. We 
use large cross-sectional samples (between 1,487 and 1,745 f?ums), both grouped 
into size-based potiolios and at the individual seclurity level, to test the model. 
We **rform tests using the &aggregated data by placing prior restrictions on 
the covariance matrix of residuals. The techniques are also applied to the 
CAPM, using standard proxies for the market portfolio. The APT explains the 
anomalous size-related season&l patterns in returns that have been docu- 
mented by others, although some nonseasonal anomalies persist. We conclude 
with a summary and suggestions for extensions. 

We briefly describe the asset pricing model to be tested. More detailed 
discussion of the APT can be found in Ross (1976), Chamberlain and 
Rothschild (1983), and Connor (1984). Let c denote the muntably infinite 
vector of returns to a countably infinite set of traded assets. Assume that asset 
retqums follow an approximate factor model, 

(1) 
E( stlft ) = 0, E( 6) = 0; E( $g;) = V, 

where ty is a k-vector of pervasive economic factors, B is an 00 X k matrix of 
the factor sensitivities of the assets, and St is the vector of idiosyncratic 
returns. 

Let B” denote the first n rows of B and V” denote the first n rows and 
columns of K Let 11 l 11 denote the matrix L*-norm? Assume that 

’ 1 I( ) 
-1 

-pp 

n 
<Cl< co foralln, 

for all 3, 
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and that there is a cross-sectional average idiosyncratic variance 

where plim denotes the Iimit in probability. The equilibrium version* of the 
AFT implies that 

1) 2 

where rFt represents the return on a riskless asset, e is a vector of ones, and yt 
is a k-+~~~tor of factor risk premiums. 

Combining equations (1) and (2) gives 

L 

rr - rFte = B( yt +l) + &= 

The relation (3j provides us with the basis for testing the restrictions imphed 
by the modeI. 

Let B” denote an n X 2’ matrix ccmisthg of the observed returris on r’i 
assets over T’ periods. Let rF denote a T-vector of observed returns on the 
riskless asset. The n X T matrix of excess returns (returns in excess of the 
riskless return) is given by R* = r* - e?$. Using (3j we can write the excess 
returns as 

R”=B”F+P, (4) 

where F is the k x T matrix of realizations of (u, +ft) over the period and E” 
is the n X T .mati of realizations of et. In the empirical specification of the 
APT used here we aflow for time variation in factor risk premiums (u,) but 
assume that factor sensitivities (B*) are time-invariant. 

In Connor and Korajczyk (1986) we describe a new technique for identify- 
ing st~tisticaUy the pervasive LLUG, plus their associated risk premiums, 
assumed by the APT. We cwi -11 th& approach asymptotic principal contponent~. 
It is similar to standard principal components except that it reiies on asymp- 
totic results as the number of cross-sections grows large. In this section, we 
briefly review the relevant results from that paper9 develop a more efficient - - 

2The distinction between the sta~dsrd AF’I’ Ed equilibrium versions of the APT is that the 
stmdtid tiikage conditions imply that (2) holds as an approximation whereas the equilibrium 
models [e.g., Connor (1984)J use additional restrictior45 0~ t23tes md supplies of assets to derive 
(2) as an equdity. St! Sha&m (i985bj for a discussion of this distinction. I 
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version of the estimator, and show that the technique is valid for models with 
time-varying risk pretiums. In addition we compare our estimated Factors 
with some standard market indices and a set of macroeconomic time series 
suggested M sources of pervasive economic risk by Chen, Roll, and Ross 
(1986). 

3.1. Asymptotic principal components 

Denote the TX T cross-product matrix &!” = (l/n)RVE We apply a result 
from Connor and Korajczyk (1986) about the eigenvectors of 0”. Let G” 
denote the orthonormal k X I!' matrix consisting of the first k eigenvectors of 
Qn. We show that G” is approximately a nonsirgu!-r linear transformation 
of F. 

Theorem 1. Gn = LnF+ $n, where L” is a nonsingular matrix for dt n and 
Plim ,, -, &” = 0, the zero matrix. 

Theorem 1 is based on the result from Chamberlain and Rothschild (1983) 
that, as the number of cross-sections grows large, eigenvector analysis is 
asymptotically equivalent to factor analysis. Note that we can determine F 
only up to a nonsingular linear transformation, Ln - this reflects the ‘rota- 
tional indeterminacy’ of factor mo&%_ 

A simple example may be useful in providing some intuition for this result. 
The simplest case with which we can deal has one pervasive factor and two 
time periods, i.e., 

wi,=bi(Yg+_f) .I &irt i=1,2,3 ,..., t=1,2. 

Note that the risk premiums, yr, can vary through time arbitrarily, but are not 
separately identifiable from the mean-zero factor realization, f;. In the exam- 
ple $2” is a 2 x 2 matrix whose (t, I) element is equal to 

The diagonal elements are given ‘_‘y 

f +2,-,: -PL) ( ’ fj biEi7/n 7 = 1,2. 
i=l I’ 

. 
0 
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The oif-diagonal tzrms in &P are given by 

Under our assumptions, the (cross-sectional) average squared beta converges 
(as n + 00) to some value, say 6’, and the (cross-sectional) average &;I 
converges to Q ? By the assumption of an approximate factor structure and 
temporally independent E’S, the last term in (5) and the last three terms iz~ (6) 
mnverge (again as n + 00) to zero. Therefore, as n - 00, &P converges to 

$J=p r (Yl+A)2 
I 

(n +m2 +A) 

(Yl +f;)(uz +a (y2+Q2 +a21,. 
I 

(7) 

The limit matrix, Q, contains all of the information we seek, [i.e., (yq +A) and 
(y2 +&)I. We merely need a means of extracting t&is information. tie reader 
can check that the first eigenvector of Q is proportional to the vector of 
realized factors plus their risk premiums. 

3.2. New extensions of the technique 

Here we offer a refinement, in terms of estimation efficiency, to our 
asymptotic principal components technique and show that the factor estimates 
allow for time-varying risk premiums. 

We motivate our refinement by considering a well-known relationship 
between factor anaiysis and standard principal components analysis. Let C 
denote the true (not estimated) 6 &v&mm matrix of returns and assume that 
they obey a strict factor mocfel: 

=BB’+ V, (8) 

where V is assumed to be a diagonal matrix. This is the model used in factor 
analysis. Pre- and post-multipQ both sides of (8) by V-II2 to get 

21” = B”B” + I 9 (9) 



of its idiosyncratk returq 

as follows. First estimate the factors by 

constant). Cal&ate QR8 = (1/n)l’P*‘l’P* and xeestbate G”*. Empirically, our 
large that CT does not provide much improve- 
with UMU~~ -sectionaI samples may find 

improvement. No@ also, that we must use estimates of the 
our proof assumes knowledge of the true i 

we are allowing n to appro+i inbity, with T fixed, we 
cannot rely on the standard T-consistency of I? This estimation risk may 
reduce the eliiciency gain of the procedure. 

Recent empirical work suggests that asset risk premiums vary through time 
[see, e.g., Brown, Kleidon, and Marsh (1983), Keim (1983), Keim and 
Stambaugh (1986), and Ferson, Kandel, and Stambaugh (1987)]. The a&y&s 
in section 3.1 assumes that asset returns follow an exact multi-factor asset 

‘The pro& is amikhe from the authors. Iu it we use a slightly stronger assumption about t&e 
ruean square idiosyncratic returns. Let zj = $ - Kj, zE = (q, . . . , z,,)‘, and Q” = ~z”z”‘]. In pbce 
of plum Pe”/n = u2 we assume hat IIQ”II is bounded for all n. 



Weesthatethefactorsandrisk 
fuur nonoverlapp* h-year ) 1969~1973* 1974-l 
and 19794983. The choice of 
toearlierworksuchsBhck, S&&s (1972) iwd 
Weestimatethef~byapplyia%~toticprincipalcomponentstothe 
entire sample of New York Stack w (NOSE) and Aukcan Stock 
BdU@e (AMEX) firms with no missing obsmations over the h-year 
suWd The numbers of fknx 
reqkctively, and the number of 

1,487,1,720, 1,734, and 1,745, 
is 60 for each subpakxL4 

IiskksreturnisassumedtQbe xeta~~~ on Trwsuy bills 
from Ibb~tson Associates (1985). 

an~~~oftlaebehaviorofthefactorsinreIatitionto 
standard market portfolio6 we regress the exazss return on the equal-weighted 
and val~+we$,ked CRSI’ (Center for l&sear& in Security Price@ purtfoIios 
on the Faust factor, the first five factors, and the Gust ten factors. To faditate 
comparisons across indices we &&!e ek factors s0 that the equal-weighted 
CRSP pmtfdio has beitas equd to LO. The estimated intercept term and the 
R* vahes are invariant to this type of resealing The results for the one-factor 
ad five-factor regressions are shown in table 1. An interesting feature of these 
regressions is that the first factor generay explains over 998 of the variancce 

‘The reQuirement ihat firms Save no missing observations &mhates about 30% of f&e total 
CRSP universe of WSE 2rii3 AMEX fums. The aveiage number of firms with returns obsemd in 
a given month is 2,151,2,474,2,567, and 2,341 in the four subperiods, respectively. 
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of &C +&w&@d portfolio. The remaining factors have statistically sig- 
ticant explanatory power (see table 2) but obviously explain much less of the 
v&au*. l?or the value-weighted portfolio the results are quite Merent. The 
first factor still explains most of the variance of the portfolio, but much less 
than it does for the equ&weighted portfolio. The additicna! factors, a@n, are 

“iinportmt. Howevr, even with ten factors we do not reach an R* value 
obtained in the relation of the =weighted portfolio with just one factor? 

Table 1 also inciudes the of regmsiq the excess returns of a 
portfolio of bo& wjth ratings below Baa (denoted JBRET) and the excess 
returns on long-term government bonds (denoted UTS) on the factor esti- 
mates. These data are from Ibbotson (1979) and Ibbotson Associates (1985), 
res~pectively..Simila~ variabks were founk zc be important factors (in explain- 
ing cross-se~tioual di&renm in mean returns) by Chen, Roll, and Ross 
(1986). For JBRET we use returns in excess of the riskless rate, whereas their 
variable UPR uses returns in excess of the return on an Aaa bond portfolio. 
The first factor exphGns between 7% and 40% of the variance of the junk bond 
returns and the first five factors explain Wtween 35% and 59% of the variaue. 
The sixth through tenth factors do not have significant explanatory power. 

The factors explain less of the variability in the excess returns on long-term 
government bonds than they do for the other indexes. The first factor exulains 
between 0% and 11% of UTS and the first five factors explain between 18% 
aud 49% of the variation. The sixth through tenth factors do not have 
sign&ant explanatoq power except in the 1974-1978 subperiod. 

The high correlation between our factor estimates and the stock and bond 
market indices is not sufficient to guarantee that- we will pick up the same 
cross-sectional pricing relation as Chen, Roll, and Ross (1986). However, I& 
of correlation might indicate that our factor estimates omit important priced 
factors. Thus, we view the correlations in table 1 as encouraging in the sense 

. that a necessary (but not s&Went) condition for *consistency with Chen, Roll, 
and Ross is met. 

Some previous empirical studies have drawn inferences about the validity of 
ahe APT by testig w&her *he estimated factor risk premiums are different 
from zero, on average. Although this is not the approach we take, individual 
and joint tests of whether the unconditional means of the factors are equal to 
zero are presented in panel A of table 3 for the sake of comparison with earlier 
work. Equivalent tests are also shown for the equal-weighted stock portfolio. 
The test that the means of the first five factors arc jointly zero (last column) is 
@@cant at the 10% level in the first two subperiods and not signScant in the 
last two. egating across the four subperiods yields a statistic that is 
significant at the 10% level. In general, the results in panel A of table 3 seem to 

‘We estimate these same regressions using factors esti.mated by the iterative procedure de- 
scribed above. Note that in calculating sz”* each scurity if w&&ted inv~r+ -*---%=ml l e i+* Gil )Pnuil’-V-~ rr- &V S&G 
idiosyncratic variance. This will tend to place less weight on small firms in relation to large firms. 
Since the results are ~.%tudly identical to the results in table 1, we do not report them kre. 



Table 2 

Wald test statistics and p-valws for tests of explanatory power of additional factors in time series 
qressions of mo&ly market hdcx excess retums on factors estimated by asymptotic principal 

_ _ B-m components. Rxtors an &mated using monthly stock xetuinh on i&87, i,720, i,734, ant! 1,745 

sectitim over ‘Liz perhds 1964-1968, 1969.1973, 1974-1978, and 1979-1983, respectivdy. 
tiefactor vs. five-f-r test is a joint test that he seccmd through Mth factors bave no 
explanatory power in a regrehm of the index on the &st five f&to_= Five-factor vs. *f-r 
testisajo~ttestthatahesixththnnr%rtenthfrrctorsBavew,~~~~~~~ina~~of 

theindexonthefhttenfactors. 

Test 

value-weighted stocks 
Equal-wei#ed stocks 
Low-grade Corp. bonds 
Lcmg~term govt. bonds 

value-*tedstocks 
&pg&q@#it& s@Q& 

Low-grade Corp. bonds 
Long-term govt. bonds 

Val~~tedStockS 
Equal-arceighted stocks 
Low-grade Corp. bonds 
Long-term govt. ‘hods 

vahue-weighted stocks 
Equal-weighted stocks 
Low-grade Corp. bonds 
Longderm govt. bonds 

1964-1968 

3201 ( < 0.001) 
23.23 ( < 0.001) 
5.86 (0.001) 
2.97 (0.03) 

1969-1973 

2.96 (0.02) 
3.64 i3.01) 
1.29 (0.28) 
0.69 (O-64) 

30.35 (< O=OOi) 

10.55 ( e MOl) 
2.67 (O*O+ 
6.31 ( e 0.001) 

1974-1978 

979 
&.#k 

5.14 
0.95 
0.68 

123.61 ( < O.O!Il) 
30.51 ( e O.001) 
6.28 ( e 0.001) 
3.36 (0.02) 

1979-1983 

1.53 (0.20) 
3.38 (0.01) 
0.73 (0.61) 
3.15 (0.02) 

24.69 ( e 0.001) 3.68 
19.00 ( e 0.001) 2.42 
8.28 ( < O.OQl) 1.99 
wo (e 0.001) 1.14 

(0.03 j 
(0.001) 
(O-46) 
(0.64) 

(0.01) 
(0.05) 
(0.10) 
(0.35) 

‘Wald test as in TM1 (1971, p. 313). Statistic has an F distribution under the null hypothesis. 
$walue is the prtiability of obtaining a larger F statistic under the ndl hypothesis. 

tell us more about *the power (or !ack of power) of tests involving uncondi- 
tional means than about the value of the true means, since we reject a zero 
mean excess return for the equal-weighted stock portfolio with about the same 
frequency as for the factors. 6 We know that with a sufficiently long time series 

?here are two common methods of perfkxming the Hotelling T* test for joint hypothew on 
mean vectors that cd42~uMe di!FeS- - 2% functions af the same basic quadratic form. One version has 
a x2 distribution and the other an F distribution. Ahhough equivdeut asymptotically, the latter 
version is more consewative (leads to rejection les often) in smdl wqles. We report the more 
conservative statistic. 
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Table 3 

Test statistics and pvatueS (in parentke@ for the hypothesis that the unconditional mean factor 
risk premium is equal to zero and for the hypothesis that the conditional mean factor risk 
premium in J2u1uary is eqti to the unconditional mean factor risk prendunt. T&t statistics are 
calculated for the first tbrou& fifth factors and CRSP equal-weighted market inditiduaiiy and for 
the first through fifth factors jointly. Factors are estimated using monthly stock retums in 1,487, 
1,720, 1,734, and 1,‘?4§ securities over the periods 1964-1968, 1969-1973, 1974-1978, and 

1979-1983, respectively. 

Period 

4d- 
weighttsd Factor 
market 1 

Factor 
2 

Factor 
3 

Factor 
4 

Factor 
5 

Factor 
l-5 

(A) Tes& for zero unconditional factor risk premiums 

1964-1968 10.18;3 10.45* l-29* 0.01* 1.37* 0.42* 2.78c 
(0.002)b (0.002) (0.261) (0.905) (0.246) (0.521) (0*026) 

1969-1973 2.10 2.04 247 2.99 230 0.01 2.08 
(0.152) (0.158) (0.121) (0.089) (0.134) (0.973) (O.Gn) 

1 OX-1978 1.7: 1.54 o.oQ 0.89 0.12 0.16 0.52 CI 
-e ‘9 “9) (wa) WW (0.733) (0.692) (0.761) 

19’$g -*. ,?a ‘, . 0.13 0.09 0.02 0.10 0.70 
is: QTar I raOOi0) (O-725) (0.767) (0.891) (0.749) (0.623) 

_- __. - 
(B) Tests for zero difkmxe between January and unconditional factor premiums 

1964-1968 6.520 7.57d o.14d 7.w o.35d 3=03d 4.11= 
@x013) ~0.00s) (o.nz) (0.010) (0.5%) (0.087) (0.003) 

1969-1973 1.89 233 36.90 4.43 0.65 1.90 1257 
(0.174) (0.132) (O.ow (O=@w (0.423) (0.172) @.Ow 

1974-1978 18.06 18.90 5.93 2.47 6.92 0.01 10.52 
(O.ooo) (O*ow (0.018) (0.121) (0.011) (0.923) @*OO@ 

1979-1983 1.33 1.66 0.01 22.12 4.56 0.71 6.95 
@.2V) (0.203) (0.916) (O.ooo) (0.037) (O-404) (O.ooo) 

‘Hotelling T2 test (distributed F,,,) for the hypothesis HO: pi = 0. 
bpvaluesin?arenthese& 
‘Hotelling T test (distributed 4 & for joint hypothesis Ho: cl = . . . = ps = 0. 
dWald test (distr&uted Fl,ss) fo; differ in mean return in January versus the rest of the 

year* &: CiJ 3o1 &NJ* 
cModified likelihood ratio test [see Rao (1973 p. 55511 (distributed &,& for joint hypothesis 

Ho: pi.l=Piwr i=l,...,5. 

the equal-weighted portfolio will have a mean excess return different from 
zero.’ 

We test for seasonality in factor mean returns by regressing the factors on a 
constant and a dummy variable that is equal to one in January and zero 
otherwise. Seasonality is implied by non-zero coefficients on the dummy 
variable. The factors shown in panel B of table 3 exhibit signScant seasonal 

‘For example, see Ibbotson Associates (1985). 
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differences in mean returns. This is consistent with some of the anomalous 
empirical evidence in relation to the CAPM. There is sign&ant (at the 5 
level) seasonal&y in at least half of the subperiods for each factor except for 
the fifth. 

As Theorem 1 indicates, the asymptotic principal components &mates 
converge to a transformation of the factors, PF, as n approaches infinity. 
Obviously, it is useful to determine actti number of securities 
used here is sufikiently large that we can ore the estimation error, *m = 
G” - LX To do this we present simulation results of asset return series that 
conform to an approximate factor mdel, estimate the pervasive factors by 
asymptotic principal components, and compare the factor estimates with the 
‘ true’ factors. 

We use the fkst five estimated factors obtained from the 19794983 sub- 
period as the ‘true’ factors, F (F is a 5 x 60 matrix). The estimates of each 
asset’s sensitivity to the factors and idiosyncratic variant are obtained from 
ordimuy least squares (OLS) regretdons of assets’ s ret on the 
factors. L& B denote the 1745 X 5 factor sensitivity matrix Thr= nondivers& 
able component of asset returns is given by BF. Idiosyncratic returns are 
constructed to be temporally independent but possibly cross-sectionahy de- 
pendent. The idiosyncratic return for asset i in period t is constructed as 

e it = Pi-l,, + qi*9 i=2,...,1745, 

where qit is a random drawing from a normal distribution with zero mean and 
a variance chosen so that uf = Var(Zig) is equal t0 the MhIWed idiosyncratic 
risks from the first-stagz OTC regressions and 0 s p < 1. The value of p 
deteknes the amount of nonfactor cross-sectionall correlation iz the sample. 
A value of p = 0 corresponds to the strict factor model studied originally by 
Ross (1976). One can show that 

which is finite as long as p < 1 and the individual idiosyncratic variances are 
bounded. Thus the correlation structure corresponds to an approximate factor 
model as defined by Chamberlain and Rothschild (1983). Our asset return 
matrix is given by BF+ e, where e is the 1745 x 60 matrix of residuals 
constructed in the above manner. Factor estimaies for each iteration are given 
by the fhst five eigenvectors of D = R’R/n. We compare these factor estimates 
with the ‘true’ factors by ex amining the R* values from the regression of each 
estimate on the five true factors. If there were no rotational indeterminacy we 
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Table 4 

sisnulation comparison of the asymptotic principal components f&or estimates vs. true factors 
for a five-factor model (ten iterations). hue iactors, asset sensitivities (betas) relative to the first 
five factors, and idiosyncratic variances are es from -nontMy data on 1,745 fhs in the 
1979-1983 subperiod. Simulated wturns are generated by adding a zero mean idiosyncratic return 
to he fitted factowelated return for each of the 1,745 assets. Xhe pararnete:r p deteh&.nes the 
amount of idiosyncratic crossc0 rrelation The R* v&es are from qresshg the estimated factor 
(column 2) on the five true factors. An R* value of 1.0 implies zero error in factor estimte. 
Average R2 is the mean value of R* moss the 
rnhimun R*). Bias is average implied k&u in 

estimated factors am true factors (d 

P Factor 
AVCIlh!ge 

R2 

0.0 1 
2 
3 
4 
5 

il.1 

0.3 

0.5 

0.7 

0.8 

0.9 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

0.997 
0.986 
0.977 

0.997 
o-9%9 
0.986 

,977 
0.972 

0.9% - 0.21 
0.980 
0.%9 

0.960 0.937 

0.9% 
0.984 

0.966 
0.958 

0.997 
0.991 
0.986 
0.973 
0.%7 

0.996 
0.981 
0.971 
0.957 
0.951 

0.995 0.996 0.994 
0.985 0.986 li.982 
0.975 0.980 0.968 
0.959 0.971 0.949 
0.957 0.966 0.944 

0.993 0.994 0.992 
0.981 0.988 0.976 
0.970 0.980 0.962 
0.958 0.971 0.942 
0.949 0.960 0.934 

0.986 0.990 0.985 
0.975 0.981 0.966 
0.952 0.982 0.931 
0.937 0.965 0.895 
0.935 0.972 0.904 

0.980 0.984 0.978 
0.966 0.981 0.950 
0.930 0.965 0.884 
0.315 0.953 0.848 
0.875 0.924 0.825 

0.957 0.964 0.951 
0.866 0.959 0.719 
0.797 0.948 O./O8 
0.573 0.849 0.062 
0.662 0.894 0.138 

- 0.14 

- 0.19 

- 0.27 

- 0.43 

- 0.83 

- 1.49 



first true factor. 

for factors 4 and 5. A value of p = 0.9 

4. Testresulcs 

In this section we test the restrictions implied by five-factor and ten-factor 
versions of the APT, we also test the CAP tsing equal-weighted and 
v&x-weighted indices. The pricing themy of section 2 imposes a testable 
cross-equation restriction on the parameters of a m3hhmriate regression of 
asset excess returns on the factors. Let an be the vector of intercepts in a 
regression of R” oh the factors 

R” = aneT’ +- B”F+ en, OQ) 
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in ui (as I’+ 60) implied by this EIV problem is given by 

pliIll(a^i-Qi)= 0 (10 y’LnrLnv) -‘y’LntQ;bi, 
T+m 

where Qq is the k x k c~vtiance matrix of factor estimation errors ( 
bi is the k X 1 vector of factor sensitivities of asset i. The last column of table 
4gkses ks of the average bias in our simulations across the 1,745 assets. 
The average bias is expressed in basis points per annum (i.e., an entry of 1.0 
represents an average bias of one hundredth of P per year). Our estimates of 
bias are extremely smA in relation to the es error of q. Thus, we 
conclude that any rejection of the models tested below is not &My to be due 
solely zfi &e use of the estimated factors, G”, rather than the true facto- F, 

We test for no mispricing (an = 0) against a general &emative hypothesis 
(a’# 0) as well as some specific alternate hypotheses for size-reIated and 
seasonal eff=ts. In addition to (lo), we estimate the mode& which 

of January to d.ifKer Z-am mispricing 
(1983)]: 

where DJ is a F-ve!ctor that takes on the value of unity during January and 
zero elsewhere. The theory implies that a;Lv = a; = 0 where a& (a;) repre- 
sents the non-January (January) specific mispricing. 

If asset returns follow a strict factor model in which idiosyncratic returns 
are independent across assets (i.e., VR is diagonal) then joint tests or” Q” = O 
would be relatively straightforward. In this case one would only need the 
estimates of ai and the individual standard errors of the estimates. However, if 
asset returns foIIow enIy an approximate factor model (V” nondiagonaI with 
bounded eigenvalues as nr + CD), we also need to calculate the covariances of 
iii and &j for i +j. ithout prior restrictions, this requires the estimation and 
inversion of the full n x n covariance matrix Pa. This is not feasible in our 
case, since n is between 1,487 and 1,745. 

V/e use two approaches to overcome this problem. F&i, we group securities 
into portfolios on the basis of Grm size, which has shown ability to predict 
deviations from the CAPM priciig relation, and test the hypothesis that the 
portfoIio abnormaI returns are zero. Such a grouping procedure, however, may 
mask important deviations from the modei if the deviations are unrelated to 
the instruments us to assign assets into portfolios. 

Because of the potential masking of pricing errors, we also test the model by 
estimating misprictig for each inciividual security. Tests of Jcint hypotheses 
about mispricing across assets are made feasible by the assumption that F” is 
block=diagonal ywhere the blocks are determ&d by three-digit SIC codes. That 
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is, fkms in different three-digit industries are assumed to have 
idiosyncratic returns. 

We present the resuhs for the grouped portfokx first and the disaggre@d 

results later. Iln each subperiod we rank the se~uritks with no missing 

observations by firm size and form ten portfolios. We define sk as the market 
value 0 
for the 
December 1963). The 
from the smalfest size decikg and so on. The ten time-series regessions of (10) 
[or of (ll)] fit into a standard multivaCate The restric- 
tions that uJ@=O (or u$~=~$=O) can be arge-sample 
tests [e.g., Wald, likelihood ratio (LR), and multiplier (LM) tests]. 

asymptotkaUy, they may give confIicting 
and Savk (1977)]. In applications quite 

&m&r to ours S 1982) shows that both the Wald and LR tests have 
pronounced tendencies to reject too often. Because of these problems the test 
statistics we report m mod&d vezsions of the LR test that are suggested in 
Rao (1973, pp. 554~556)! The statistic is given by 

where I prl(l PJ) is the deterknant of tie maximum likelihood estimate of the 
error covariance matrix from the regression in its restricted (unrestricted) 
form, T is the number of time series observations, It: is the number of factors, 
and p is the number of cross-sections in the multivariate regression. For the 
hypotheses tested kx, ARao (1973) shows that the statistic has (under the 
assumption of normally distribu+A errors) an exact small-sample distribution, 
which is F(p, T- k -p). The statistic in (12) is identical to the statistic 
described on page 32 of Gibbons, Ross, and Shanken (1986). The use of this 
statistic or ones similarly adjusted for small samples can lead to quite difkrent 
inferences from the usual largesample test statistics [see inder (‘5985) ad 
Shanken (1985a)]. 

Table 5 gives the results of our tests of ‘&s pG.ug restrictions for the ten 
size-based portfolios. The APT does better (a lower frequency of reiections) 
than the CAPM in explaining ary seasonality in 
a;! = Q). At first glance, the APT to do a worse job of e 
nonseasonal mispricing (a;tr = 0). Looking at rejection fates =m= non- 
nested models can be misleading, however, 
better (smaller values of ial) may be rejected if the deviations 
more precisely (i.e., the test has more power). 

*We have also calculated ople standard versions of the Wald and LR statistics. 
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A closer look at the parameter estimates gives a very different picture of the 
relative p&ommce of the models than does a casual investigation of the test 
statistics in table 5. Fig. 1 plots the average mispricing (across the four 
s&p&&) for each size portfolio in relation to the CAPM (using the 
value-weighted and equal-weighted portfolios of NYSE and AMEX stocks) 
and the APT with five factors. The vertical axis is the average value of ui for 
each size portfolio from smallest ($1) to largest (SlO). Although the aggregate 
statistics reported in table 5 indicate a stronger rejection of an = 0 for the APT 
&a for the equal-weighted and value-weighted CAPM, the actual value of 
AFT mispricin~ is much smaller (for all but one portfolio) in relation to the 
value-weighted CAPM and slightly smaller (for all but two portfolios) in 
relation to the equal-weighted CAPM. Thus, the stronger rejection of the 
five-factor APT is due to more precision in the estimates of ai (i.e., R* values 
around 0.98 versus 0.75) rather than larger pricing errors. 

Fig. 2 presents some of tht: most interesting results. One of the most 
persistent empirical anomalies in asset pricing has been that the common 
equity of small firms earns a much higher (risk-adjusted) return than the 
equity of large firms, particularly in January. The results in fig. 2 indicate that, 
when we use the fivefactor APT to adjust for risk there is no relation between 
January-specific mispricing and firm size. Also, although the APT does not 
totally explain the non=1 ,anuary specific size effect (see fig. 3), it does at least as 
well as the versions of the CAPM. Again, this is quite different from what one 
might guess from the statistics in table 5. The nature of the factor-model 
approach (in which the factor estimates are chosen io eqdah variation) would 
lead one to expect the APT might do better in explaining a time-varying size 
anomaly. It is encouraging, at least, that the evidence is consistent with a 
model in which the anomalous CAPM January seasonal effect is due to assets’ 
different risks relative to factors with seasonal risk premiums. Work along the 
lines of Chen, Roll, and Ross (1986) may help us identify the nature of these 
seasonal factors. 

Before we turn to the d&aggregated results we present some evidence (in 
table 6) on whether the assumption of block diagonality, on the basis of 
three-digit SIC codes, is reasonable. Consider forming equal-weighted industry 
portfolios for each three-digit industry and estimating (10) for each industry. 
For each two-digit industry define Vzo as the error covariance matrix [from 
(lo)] of the component three-digit portfolios. If returns are block-diagonal by 
three-digit industries, then VzD is diagonal. To test whether V2D is diagonal, 
define szD to be the ratio of the determinants of the unrestricted and restricted 
estimates of VzD. An appropriate statistic for testing diagonality is [see 
Morrison (1976, pp. 258-25911 
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PORTFOLIOS RANKED BY SIZE OF FIRM 

Fig. 1. Mispricing, in percent per annum, for ten portfolios formed by ranking on firm size. Size is 
defined as market value of common stock at the beginn& of each subperiod. Sl represents the 
portfolio of smallest firms whiIe SlO represents the portfolio of largest Grms. For each of four 
subpA.xIs (19661%8,1%9-1973,197~1978,1979-1983) mispricing is estimati By the inter- 
cept in the ~~ression of monthly portfolio excess returns on a constant, and (a) monthly exm 
returns on the CRSF valwweighted potiolio of NYSE and AMEX stocks, denoted CAPM-VW 
(long dashes -=cting qua=), (b) -My excess saims on the CR!5P equal-weighted 
portfolio of NYSE and AMEX stocks, denoted CAPM-EW (short dashes connecting diamonds), 
and (c) firs: five-factor estimates from the asymptotic principal components procedure, denoted 
APT-5 (solid line connecting circles). Mispricing is the average mispricing across the four 

subperiods. 

which, assuming normality, has an asymptotic distribution that is x2 with 
degrees of freedom equal to (j* -. j>/2, where j is the number of three-digit 
industries in the particular two-digit industry. Table 6 shows the number of 
iiriio-digit industries that accept and reject the null at the 0.05 level. The 
industries marked N/A are those with only one three-digit industry within the 
two-digit classification.9 

The results for the CAPM, especially using the value-weighted market 
portfoho, show a relatively large number of rejtitions. The five- and ten-factor 
models show less evidence against the block-diagonality assumption. There is 

‘These tests will tend to reject independence too oftca if security returns have probability 
distributions with larger kurtosis than the normal distribution [see Muirhead (1982, pa 547)]. 
Given the evidence of ‘fat tails’ in return distributions, L - . . *L= -4ence against independence is not as 
strong as a literal interpretation of the numbers in table 6 sould indicate. 
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PORTFOLIOS RANKED BY SIZE OF FIRM 

Fig. 2. January-specific mispricing, in percent per annum, for ten portfolios formed by ranking on 
firm size. Size is defined as market value of common stock at the beginning of each subperiod. Sl 
represents the portfolio of smallest firms, while SlO represents the portfolio of largest firms. For 
each of four subperiods (19644%8,1%9-1973,197~1978,1979-1983) m&pricing is estimated 
by the slope coefficient on the January dummy variable in the regression of monthly portfolio 
excess returns on a constant, January dummy variable, and (a) monthly excess returns on the 
CRSP value-weighted prHo!/io of NOSE md AMEX stocks, denoted CAPMJW (long dashes 
connecting squares), (b) monthly excess returns on the CRSP equal-weighted portfolio of NYSE 
and AMEX stocks, denoted CAPM~EW (short dashes connecting diamonds), and (c) first 
five-factor estimates from the asymptotic principal components procedure, denoted APT4 

line connecting circles). M&pricing is the average mispricing acroti the four subperiods. 
(solid 

still some evidence in these models of nonindependence across three-digit _ 
industries. 

Although the block-diagonality assumption is not strictly true, we believe it 
is a reasonable first step to using disaggregated data in testing the APT.1o We 
also perform tests that assume Vn is diagonal. They are not reported here but 
are available from the authors. 

The results of the tests for the disaggregated (nongrouped) regressions are 
presented in table 7. Under the assumption of block-diagonality 
industries we can estimate the multivariate regressions (10) 

by three-digit 
or (11) and 

calculate the test statistic (12) separately for each industry. if the blo&- 

“A potential alterr4ve approach would be to aose relative firm size, rather 
model the coar&?ticn structure. The results in 
approach may be fruitful. 

I than industry, to 
indicate tha! this 
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Sl s2 s3 s4 Sf s6 S? s6 s9 SlO 

PORTFOLIOS RANMEU Wt’ SE GF FIRM 

Fig. 3. Non&m3ry~specific mispricing, in percent per annum, for ten portfoiios formed by 
ranking on fmn size. Size is defined as market value of common stock at the beginning of each 
subperiad. 411 represents the portfolio of smallest firms, while SfO represents the portfolio of 
largest firms. For each of four sub~&xis (H&4-1%8, 1969-1973, 1974-1978, 1979-1983) 
mispricing is &nated by the intercept in the regression of monthly portfolio excess returns on a 
constant, Januatt dummy variab , 2x~i.i (a) monthly excess returns on the CMP va!ue+veighted 
portfolio of NYSE r?d AMEX stocks, denoted CAPM-VW (long dashes connecting squares), 
(b) monthly exess returns OE the CRSP equakweighted portM~ of NYSE aud AMEX stocks, 
denoted CAP&EW (short dashes connecting diamonds), and (c) first five-factor estimates from 
the asymptotic principal components proced-ure, denoted APT-5 (solid line connecting circles). 

Misprking is the average mispr&g across the four subperiods. 

diagonality assumption is true, these F statistics are independent across 
blocks. However, unlike for x2 random variables, we cannot aggregate across 
b!o& bj simply summing the test statistics. We use an aggregation procedure 
similar to the one suggested, in a, slightly different context, by Sh 
(1985a).” We approximate each F statistic by a xi distribution with th 
tail area, where p is the number of cross-sections in the block. e sum of 

“Shanken (1985a) suggests approximating the F statistic by a at4jrmJ distribution. That is, firid 
the v&e of a unit normal with the same tail area (p-value) as the computed F statistic. The sum 
of l &ese -tit normals, divided by the square root of the number of blocks, has a unit normal 
distribtt tion. Qur application different in that we 

different degrees of 
use of the nor 

_*_I.. 
WCi&iiE GE W&W VB’CIV~ pla h kln& rmbmdl~cc nf ci7p T&c Jo_ nnt a hwwwrn fnr tpctc ;* c~~~L~.. II not.-\ 

*“~zu”aw”Y Y_ e-M. _.l” _Y WY. “.*a.-. l . ax?. .WYIU ..a USIQIsAbU \11703aj* 

since the F statistics in that study have the same degrees of freedom. 
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Table 6 

Test results for block-&agonality of idiosyncratic covariance matrices where blocks are defined by 
threedigit SIC code industries.a ‘Accept’ represents the number of two-digit industries that fail to 
reject (at the 0.05 level) independence of the component three-digit idiosyncratic errors. ‘Rejee:’ 
represents the number of Tao-digit industries that reject (at the 0.05 level) independence. ‘M/A’ is 

the number of two-digit industries with only one three-digit industry. 
-- _ 

(A) CAPM 

Equal-weighted Value-weighted 

Period Accept Reject WA Accept Reject WA 

1964-68 23 24 1A 9 38 14 
1969-73 22 27 ;‘; 9 40 13 
1974-78 20 31 12 16 35 12 
1979-83 20 28 15 14 34 1c 13 

(W APT 
Pive-factor Ten-factor 

Period A-Pt Reject WA Accept Reject N./A 

1964-68 23 24 14 25 22 14 
1969-73 28 21 13 32 17 13 
19?4-78 28 23 12 28 23 12 
1979-83 27 21 15 27 21 15 

aFor each two-digit industry equal-weighted portfolios of each three-digit subindustry are 
formed. Idiosyncratic returns are measured by residuals from time series regressions of industry 
portfolio excess returns on market proxy excess return (CAPM) or factors (APT). Null hypothesis 
is that residual covariance matrix is diagonal. Assuming normality, test statistic is asymptoticahy 
x2 with degrees of freedom equal to (j* - j)/2, where j is the number of three-digit industries 
within the two-digit industry. See Morrison (1976, pp. 258-259). 

these x2 random variables has an asymptotic x2 distribution with degrees of 
freedom equal to the total number of cross-sections, n.l* 

The cle&est inference that one can draw from the statistics in table 7 is that 
the hypoth&s of no January n&pricing (a; = 0) is rejected even when the 
APT is used as a benchmark. Over the second subperiod wc reject the CAPM 
but not the APT in months other than Janua&zy (testing u;CrJ = 0 at the 0.01 
level). Overall, these test results seem to lack power to discriminate between 
the models. This is true especitiy in tight of the potentia!;ly Lmisleading 
inferences that might be drawn from exclusive reliance on the significance of 
the test statistics for nonnested models against general alternatives. It may be 

I2 For the tests assuming block-diagonality, n is equal to l&i, i,687, i ,761 p and 1,713 i 
respectively. This is because one industry (electric utilities) has a very large number of firms in 
relation $0 the number of time series observations per period, hence t is singular or ne;u singular. 
For this industry a : fen. ..zd portfolios consisting of two firms each. This reduced the number of 
cross-sections in ttis industry from 52, 66, 66, and 65 to 26, 33, 33, and 33 in each respective 
period 
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Table 7 

Modified IikeIihood ratio (MLR) tests for the absmcc CS tiqtitiq wing individuaI secwities.a 
Estimates of mispticing obtained from a multivariate regression of monthly wurity excess returns 
on (a) the excess retuzs on l &c equaLweighted and valw-weighted c;WSP portfolios tif s?SE and 
AMEX s+&&s and (b) five and ten factors estimated by asymptotic principal components. The 
sampIe consists of 1,487, 1,720, l,734S and 1,745 securities over the 1964-1968, 1%8-1973, 
1974-1978, ancI 1979-1983 subp&tI, respectively. UnconditionaI mispricing is measured by 
the intercepts of the m&variate regre&on including a constant term. ConditionaI (seasonaIj mis- 
pricing measured by the ;&rcept and dummy slope coefficients in a muhivariate regression 
inchuling a constant term and a January dummy variable. Test statistics are calculated assum- 
ing the idiosyncratic covariance matrix is block=di~onaI with blocks defined by three-digit SIC 

industrial codes. 

R” = aneT’ f B”F + g? prrd R” = a&pT’ + aJo’ .+ BnF + In 

CAPM 

I-Iypothesis Period 
I&p&_ 

weighted 

. 
Five 

factors 
Ten 

factors 

aIndependent variables are the CRSP stock portfolios or factor estimates prduced by the 
asymptotic principal components technique, G, a vector of ones, eT, and a dummy variable for 
January D. Average n&pricing is measured by Q”, January-specific mispricing by a$ ad 
non- Janus y-specific mispricing by; +. Within each block test statistics tf_rg *A 
[see Rao (I!G>; p. SSS)] which h F distribution. Test ,c+?tistics are 

re&ate test statistic asymptotic x2 distribution with d 
equal to i&l (I%&1%8j, i,687 (1969.1Sf3), 1,701 (I974-1978j, and 1,713 (1979-19832. 

Sp-vtiues in parentheses. 

a”=0 

a: = 0 

4;lr/ = 0 

a”=0 

a,R = 0 

a;5;r = 8 

a”=0 

a;=0 

a;lrl = 0 

a”=0 

a; = 0 

n 
Q#l,r = 0 

1964-1968 

l-i%8 

1964-1968 

1969-1973 

1969-1973 

l%Y-1973 

1974-1978 

1974-1978 

1974-1978 

1979-1983 

1979-1983 

1979-1983 

1,083 
(i SOOOjb 

_ -__ 
,Y5 

(: bo:, 
1,173 

(1*9fjQ) 
1,494 

(l.ooo) 

3,152 
( *: 0.001) 

2,006 
(< 0.01) 

1,274 
(1.W) 
2,763 

( < O.oOl) 

1,416 
(l.Oj 

1,09& 
(l.ooo) 

2,329 
( < 0.001) 

1,256 
(l.OOOj 

1,405 
(0.847) 

2,279 
( < 0.001) 

1,345 
(8.985) 

1,655 - 
(0.786) 

3,501 
( < 0.001) 

2,332 
(< 0.001) 

i,644 
(0.883) 

4,269 
( < 0.001) 

1,249 
(1 .mj 

2,369 
(< O.Qol) 

1,312 
(l*Wj 

1,053 
(l*~j 
17-9 

q’-IU 

( < 0.i.m) 

1,159 
(l.Oj 

1,261 
(l.tj9fIj 
1.695 

(0.441) 

1,411 
(l.ooo) 
1,360 

(l.GGuj 

2,128 
( c O_Q@) 

1,519’ 
(0.999) 

l,i41 
(l.(-joj 

2 
( < O.OOlj 

1,342 
(l.ONjj 

1,014 
(l.ooo) 
1,589 

(0.010) 

1,094 
(l.ooo) 

1,277 
(Looes) 

1,763 
(9.0%) 

1,423 
(l.~j 
1,445 

(I.000) 

1,740 
(0 24srj 

1,63@ 
(Q.V%) 

1,161 
(1.0) 

1,884 
(0.002) 

1,367 
(1-W) 
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1964-68 1969-73 

WV r--J Ew 

Fig. 4. Mea abs&te ricing, in percent 

PERIOD 

19740T8 1979-83 TOTAL 

APT5 rsj APT10 

per annum, for individual assets. For the fovur 
subperiods (E&4-1%8, 1969-1973, 1974-1978, 1979-1983) there are i&7, 1,720, 1,734, and 
1,745 assets, respectively. Mean absolute mispricing is estimated by the cross-sectional mean of 
the absolute value of the intercept in a qression of monthly individual asset excess returns ou a 
constat, and (a) monthly excess returns on the CRSP value-weighted portfotic of &TSE and 
Alex stocks, denoted VW, @) monthly excess returus on the CRSP equal-weighted pmtfolio of 
NYSE and AMEX stocks, denoted EW, (c) first five-factor estimates from the asymptotic 
prirzcipal components procedure, denoted APT5, and (d) first ten-factor estimates from the 
asymptotic principal components procedure, denokd APTlO. Total represents average absolute 

misprichg across the four subperiods. 

that, even with the prior restrictions @aced on the covariance matrix of the 
residuals, these tests have low power because of the large number of assets in 
relation to time series observations [see Gibbons, Ross, and Shanken (1986)].i3 

Figs. 4, 5, and 6 depict the mean absolute mispricing (MAM) of the 
individual assets for the alte_rnative models. In general the APT has smaller 

It is not uncommon, however, for the ten-factor model to have larger 
MAM than the five-factor model. This mav be due to estimation error of 
factor loadings for factors 6 through 10 that increases the error in a^” more 
than the decrease in the error of a” due to including the risk premiums of 
additional factors (this includes the case where factors 6 through 10 are not 
priced). 

“Also, the tendency of the p-values to cluster around zero or one indicates that assuming 
block-diagmaby tends to understate the standard errors. 
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PERIOD 

1964-68 1969-73 1974-78 1979-83 TOTAL 

Fig. 5. Mean absolute hwaryqecific mispricing, in percent per annum, for individual assets. 
For the four subperiods (1%4-l%& l%!?-l!J73,1974-1978,1979-1983) there ate l&37,1,720, 
1,734, and 1,745 assets, reqectively. Mean absolute mispricing is estimated by the cross-sectional 
mean cI the absolute value of the slope coeficient on the January dummy variable in a regression 
of montMy +Ii~<dual asset excess returns on a constant, a January dummy variable, and (a) 
monthly excess returns on the CRSP vahe=wi&tt portfolio of NYSE ad AMEX stocks, 
denoted VW, (b, monthly excess returns on the CRSP equal-weighted portfolio of NYSE and 
AMEX stocks. denoted EW, (c) first five-factor estimates from the asympiotic principal cc.:p+ 
nents procedure, denoted APTS, and (d) first ten-factor estimates from the asymptotic principal 
components procedure, denoted APT&& Total represeuts average absolute January-specific mis- 

prkhg across the four subperiods. 

Given the mixed results when testing against the 
pothesis of nonzero m&pricing, we provide tests against 
that m&pricing is related to the market capitalization 
of Brown, Kleidon, and Marsh’s (1983) result, we 
between abnormal returns and the logarit of the value of each 
common equity concentrate on the relations between QJ” 
firm size, repres 

4iJ = 00 + O,LS,? 

14Resuhs for a”, from (lo), are available from the authors. 
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is not a scalar pntrix and the covariance matrix of the t?;‘s is proportional to 
V”). However, the covariance matrix of the errors can be estimated from the 
time series residuals from (ll)? e estimate (14) using ordinary least squares 
(OLS), weighted least squares (WI2Q and generalized least squares (C&S), 
which correspond to assuming Vn is scalar, diagonal, and block==diagonal, 
respectively. As before, the blocks are assumed to be defined by three-digit 
SIC industrial codes. only the results for the block-diagonal case are pre- 
sented. These are given in table 8. In addition to the piwameter estimates, we 
show the R2 value, a sam~ti~+i;or?r-based (Wald) test that the coefficients 
are jointly zero [see (3.3) on p. 313 of Theil (197111, and an asymptotic 
approximation of the posterior odds ratio for the null assuming equal prior 
odds. 

We report the posterior odds ratio since statistical significance at conven- 
tional levels (e*g., 05 or 0.01) need not @#y strong evidence against the null 
hypothesis in very large samples (we have appromately 1,700 observations in 
the regressions reported in table 8). This is because when we hold the 
probability of type I error of the test constant, the probability of type II ezr~r 
goes to zero as the sample size increases. Thus, with large stt.mpies all but 
trivial deviations from the pricing theory will be rejected at conventional 
sign&ance levels [this property is sometimes referred to as Lindley’s paradox; 
see Zellner (1971, pp. 303-3(B)]. The asymptotic approximation of the pos- 
terior odds ratio, K, for our null hypothesis is a simple function of the F 
statistic reported in table 8, gives by S% 

(1% 

where n is the Bumber of observations and F,. n-2 is the value of the F 
statistic [see eq. (54) of Rossi (1980)], The dependence of the odds ratio on 
sample size as well as the F’ statistic is clear from (15). 

We first investigate the relation between January-specific abnormal returns 
and firm size. From a classical sampling&eory point of view the hypothesis 
that a0 = a1 = 0 is rejected (at anv significance level above 0. 
instance except for the tern-factor Awni during mcl MY-lY73, an 
the five-factor APT during 1964-1968 and 197 
find the standard negative relation between 
posterior odds ratio favors the hypothesis of 
n&pricing in three out of four subperiods for 

the inverse of the cross-produ 
] - I. Staudaii! results for the 

Zellner (1971, p. 24O)j imply that var(cij 
the constants of tiouality are the (23 
the assumption truca’sareli 
covariance matrices in (14) are proportional to V”. 

atrix of the regressors in (11). 
~~za+~ R*wssion m 
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subperiods for the ten-factor APT. This is consistent with the results for the 
size-grouped portfolios shown in fig. 2. 

The res~uhs for non-January-specif?c returns are also consistent with those 
reported above for the size-grouped portfolios. We nnd a reversa! in the size 
effect in the 1969-1973 subperiod- For the CAPM there is a positive relation 
between our measures of abnormal returns and 5r-m size. During the other 
periods there is the usual negative relation between abnormal returns and size. 
This is consistent witt the fmdings of Brown, Kleidon, and Marsh (1983), 
which show a reversal of the size e&ct in the 1969-1973 period. The posterior 
odds ratio for 0, = 8r = 0 favors the null hypothesis only in the 1969-1973 
period. These results are consistent with those depicted in fig. 3. 

Our final test involves a restriction impiied by an intertemporal version of 
the equilibrium APT [see Connor and Korajuyk (198711. This model implies 
there is a factor (say, the tist factor) for which each asset has a sensitivity of 
unity. That is, Bn = (en@“), w h ere en is an n-vector of ones. We call this 
factor the unit-beta factor. If we could observe the true factors, F, and if we 
knew which factor corresponded to the unit-beta factor, then we could easily 
test the linear restriction 

B.“, = en, (16) 

where B_i represents the ith column of IS and we have assumed that the 
factors have been ordered so that the first factor is the unit-beta factor. 
However, we actually observe G” = LnF+ t/i’. Even if we assume en = 0 so 
Gn = LnF, there is a rotational indeterminacy problem that prevents us from 
testing (16) directly. From (4) and assuming Gn = LnF’, we have that 

R”= [B”(L’)-‘1 G” + e” = Bn*Gn + en. 

Since Ln is unobservable, the oniy restriction imposed on Bn* is that there 
exists a &vector AI (corresponding to the tist column of L”j such that 

This is a nonlinear (since x” is utiomj restrictian on the coefficient matrix 
BY Let us partition B”* into Sr*, a k X k matrix formed from the first k 
rows of BnS, and Bi*, a (n - aC) x k matrix formed from the remaining rows 
of Bn* (to simplify notation we ~41 drop the n superscript except when this 
might cause some confusion). Thus, B*’ = ( Bl*;, B$ p). The restriction (17) 
implies that 

B?X=ek and Bj’h=en-k. L (18) 
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c 

‘Erable 9 ‘i, 

Wald test for unit-beta restriction on five-factor APT for ten portfolios (equal-w~$$zted portfolios 
I.,.., u& c% a ia&@ of ma&et %&G Qb WC 9.. l n4 l L txzghhg of each five-year subperioq. T&e ~~tricti~n 
implies that there is a linear combiition of the five factors such that each of the portfolios has a 
sensitivity, with respect to the linear combinatioq equat to 1.0. Asymptotically, e&e statistic has .F 

distribution with degrees of freedom vl - 5 and v2 = 540 under the nulI hypothesis. 

Period F statistic ( P-valw) 

1%4-l%% 6.62 ww 
ptg594973 6.21 (O=W 
1974-1978 2.36 (O&4) 
1979-1983 323.76 mw 

The first equality in (18) implies that X = (B1*)-‘ek. Inserting this into the 
second equality in (18) we get the following no&near cross-equation restric- 
tions on the parameters of the model: 

We u.se a Wald test [see Gallant (1987, p. 328)) to test (19). The results for the 
five-factor APT using sizebased portfolios are reported in table 9. (The tests 
are not feasible using disaggregated data and there are no overidentifying 
restrictions for the ten-factor model.) The tests reject the unit-beta restriction, 
at the 0.05 level, for each subperiod. The rejections are quite strong except in 
the 1974-1978 subperiod (which has a p-value of 0.04). It is difficult to 
determine which aspects of the interter~poral mode! are leading to the rejec- 
tions in table 9. 0ne possibility is *&at the option-like features of common 
stock, caused by risky debt in the capital structure. create nonlinearities in the 
factor structure that may invalidate the pricing restrictions [Jagannathan and 
Korajczyk (1986) discuss problems caused by nonlinear&s in a CAPM 
context!, It may be that the tests of the unitbeta restriction have more power 
against this alternative than do tests of the intercept restriction. See Connor 
and Korajczyk (1987) for a more detailed discussion of the intertemporal 
equilibrium version of the APT. 

5. summary 
This paper implements a new set of econometric techniques for estimating 

a~ld toting the APT, using the asymptotic principal components theory first 
suggested by Chamberlain and Rothschild (1983) and extended by Connor 
and Korajczyk (1986). 

Se&on 3 extends the asymptotic principal components technique further. 
We develop a more efficient version of the estimator, and we show that the 
te&-t&q-a a - de v&id for some cases of time-varying risk premiums. 



288 G. Connor and R.A. Kcx@yk, Risk and return in ai equilibria APT 

In section 4 we test the APT and CAP&i using both ~i~~-gpo~ped portfolios 

and large numbers of individual assets- The tests with individual assets are 
made possible by placiig p rior restrictions on the structure of the covariance 
matrix of idiosyncratic returns. 

For tispricing that is not January-specific our five-factor versiyn of the 
APT seems to perform *better than the value-weighted CAPM and about as 
well as the qua&weighted G4PM. The APT performs much better than either 
implementation of the CAPM in explaining the January-specific misprizing 
related to firm size. This result is due to seasonality in the estimated risk 
premiums of the multi-factor model that is not captured by the single-factor 
CAPM relations, even though the premium in the latter model also exhibits 
seasonality.-- 

We &also test the prediction of an intertemporal version of the APT that 
there is a factor for which ali assets have a sensitivity of unity. This hypothesis 
is strongly rejected for a fivefactor APT. 

Extensions of this work can take several directions. Procedures designed to 
compare nonnested models [similar to those used in Chen (198311 will improve 
our understanding of the relative merits of the mod&s. time improvement in 
the technology may be obGned by investigating diRerent specifications of the 
error covariance matrix, V”. Linking the seasonality in estimated factor risk 
premiums to more fundamental economic variables should help us understand 
the nature of the obsmrd seasonal effects. 

Our empirical results indicate that while neither of our implementations of 
the APT or CAPM is a perfect model of asset pricing, the APT is consistent 
with the persistent size-related seasonal effects in asset pricing. l%npirically, 
the model sews to be a reasonable alternative to the CAPM. 
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