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We use an asymptctic princinal comnonents technigue to estimate the pervacive factors influenc-

=~ —— cow—

ing asset returns and to test the restrictions imposed by static and intertemporal ecuilibrium
versions of the arbitrage pricing theory (APT) on a multivariate regression model. The empirical
techniques allow for fairly arbitrary time variation in risk premiums. We find that the AF.
provides a better description of the expected returns on assets thar: the capival asset pricing mode!
(CAPM). However, some statistically reliable mispricing of assets by the APT remains.

1. Introduction

In this paper we estimate and test the restrictions implied by an equilibrium
version of Ross’s arbitrage pricing theory (APT). We estimate the return
factors using the asymptotic principal components technique first suggested by
Chamberlain an:a Rothschild (1983) and extended by Connor and Korajczyk
(1986). We test the cross-sectional restrictions imposed by the APT with a
variety of multivariate procedures.

Section 2 describes the APT specification thai we iest. We use both the
standard, static version of the APT and an intertemporal version developed in
Connor and Korajczyk (1987). In this second version there is one factor that
has a unit beta for every security. The static version does not impose this
unit-beta restriction.
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Iodrick, Ravi Jagannathan, Donaid Keim, Allan Kleidon, Brucc Lehmann, Craig MacKinlay,
Robert McDonald, Jay Shanken, Daniel Siegel, an anonymous referee, and the editor, John Long,
for generous comments and suggestions. The paper also benefited from discussions with the
seminar participants at University of Alberta, Carnegie-Mellon University, University of Chicago,
INSEAD, University of Minnesota, Northwestern University, University of Pennsylvania, Souii-
ern Methodist University, Stanford University, and University of Southern California. The usual
caveat applies.
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In section 3 we outline the asymptotic principal components technique that
we use to estimate the pervasive economic factors and a new iterative version
that is more efficient than the one-step procedure described in Connor and
Korajczyk (1986). These factor estimates are valid in a model with time-vary-
ing risk preminums, as long as asset betas are constani. We estimate the return
factors and relate them to some macroeconomic time series suggested as
possible sources of pervasive economic risk by Chen, Roll, and Ross (1986).
We also analyze the estimation error in the factors using our technique and
discuss the relationship between our method and standard factor analysis.

In section 4 we describe our testing procedures and empirical results. We
use large cross-sectional samples (between 1,487 and 1,745 firms), both grouped
into size-based portfohos and at the individual security level, to test the model.
We periorn tests using the Gisaggregated data by placing prior restrictions on
the covariance matrix of residuals. The techniques are also applied to the
CAPM, using standard proxies for the market portfolio. The APT explains the
anomalous size-related seasonal patterns in returns that have been docu-
mented by others, although some nonseasonal anomalies persist. We conclude
with a summary and suggestions for extensions.

2. Empirical specification of the APT

We briefly describe the asset pricing model to be tested. More detailed
discussion of the APT can be found in Ross (1976), Chamberlain and
Rothschild (1983), and Connor (1984). Let r denote the countably infinite
vector of returas to a countably infinite sei of traded assets. Assume that asset
returns follow an approximate factor model,

=E(F) + Bf+&,
E(gl)=0, E(f)=0, E(z&)
where j: is a k-vector of pervasive economic factors, B is an oo X k matrix of

the factor sensitivities of the assets, and &, is the vector of idiosyncratic
returns.

Let B" denote the first n rows of B and V" denote the first n rows and
columns of V. Let ||-|| denote the matrix L>-norm.! Assume that

1 -1
(_BmBn)
n

i <c,<oo for all n,

1)

<c¢;<oo forallnm,

1 . . . <
For a square matrix X. § X}t = max|z’Xz!, subject 1o g'g = 1.
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and that there is a cross-sectional average idiosyncratic variance

2 * 1 ) -~
o°= phm —§¢g],
n=00

where plim denotes the limit in probability. The equilibrium version? of the
APT implies that
-~ = O
E("l) rFie + B‘l’t! (‘-)

where r;, represents the return on a riskless asset, ¢ i

aava '~ -F‘ - awowan T AWV SR W A BaFEna WIS Wy jt

is a k-vector of factor risk premiums.
Combining equations (1) and (2) gives

'3"Fre=3(71+jtr)+§z' (3)

The relation (3) provides us with the basis for testing the restrictions implied
by the model.

Let r" denote an n X T matrix consisting of the observed returiis on #
assets over T periods. Let rp denote a T-vector of observed returns on the
riskless asset. The n X T matrix of excess rewurns (returns in excess of the
riskiess return) is given by R" = r" — e"rf. Using (3) we can write the excess
returns as

R"=B"F+¢", (4)

where F is the k X T matrix of realizations of (y, + f,) over the period and ¢"
is the n X T matrix of realizations of e, In the empirical specification of the
APT used here we allow for time variation in factor risk premiums (y,) but
assume that factor sensitivities (B") are time-invariant.

3. Statistical identification of the faciors

In Connor and Korajczyk (1986) we describe a new technique for identify-
ing stziistically the pervasive faciois, plus their associated risk premiums,
assumed by the APT. We cz!! this approach asymprotic principal components.
It is similar to standard principal components except that it relies on asymp-

totic results as the number of cross-sections grows large. In this section, we
briefly review the relevant results from that paper, develop a more efficient

The distinction between the standard APT and equilibrium versions of the APT is that the
standard aibitrage conditions imply that (2) holds as an approximation whereas the equilibrium
models [e.g., Connor (1984)] use additional restrictions on iastes and supplies of assets to derive
(2) as an equality. See Shanken (19835b) for a discussion of this distinction.
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version of the estimator, and show that the technique is valid for models with
time-varying risk premiums. In addition we compare our estimated faciors
with some standard market indices and a set of macroeconomic time series
suggested as sources of pervasive economic risk by Chen, Roll, and Ross
(1986).

3.1. Asymptotic principal components

Denote the T X T cross-product matrix 2" = (1/n) R"'R". We apply a result
from Connor and Korajczyk (1986) about the eigenvectors of 2". Let G”"
denote the orthonormal & X T matrix consisting of the first k eigenvectors of

Q". We show that G" is approximately a nonsirgu!-r linear transformation
of F.

Theorem I. G"= L"F+ ¢", where L" is a nonsingular matrix for all n and
plim,, _, ¢" =0, the zero matrix.

Theorem 1 is based on the result from Chamberlain and Rothschild (1983)
that, as the number of cross-sections grows large, eigenvector analysis is
asymptotically equivalent to factor analysis. Note that we can determine F
only up to a nonsingular linear transformation, L" - this reflects the ‘rota-
tional indeterminacy’ of factor models.

A simple example may be uscfu! ir providing some intuition for this resulit.
The simplest case with which we can deal has one pervasive factor and two
time periods, i.e.,

R,=b(v,+f) & i=1,23,.., t=1,2.
Note that the risk premiums, y,, can vary through time arbitrarily, but are not

separately identifiable from the mean-zero factor realization, f.. In the exam-
ple Q" is a 2 X 2 matrix whose (7, 7) element is equal to

n
Z RitRi'r/n‘

i=1

The diagonal elements are given hy

ot

&

e, = (v,+f;')2( !_Z b.-’/n) + ( y s%,/n)

=1 i=1

+2(Yf+f:)( Z bisif/n)s T= 192' (5)

i=1
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The oif-diagonal tsrms in £” are given by

\

Y b/n

i=1 /

2 =2 =(n+A)(+f)

+( i silei?./n) + (71 +f;)

i=}

| i bieiz/")
\i=1

+(*.¢—,+f:\.( ):,b,-e,.l/n). (6)

R V'

Under our assumptions, the (cross-sectional) average squared beta converges
(as n— o0) to some value, say 5°, and the (cross-sectional) average e
converges to g2. By the assumption of an approximate factor structure and
temporally independent é&’s, the last term in (5) and the last three terms in (6)

converge (again as n — oo) to zero. Therefore, as n — oo, 2" converges to

=Ez[ R AR CRV AR A I

(n+A)(+1) (Yz‘*‘f;)z

The limit matrix, £, contains all of the information we seek, fi.e., (v, + f;) and
(v, + f;)]- We merely need a means of extracting this information. The reader
can check that the first eigenvector of 2 is proportional to the vector of
realized factors pius their risk premiums.

3.2. New extensions of the technigue

Here we offer a refinement, in terms of estimation efficiency, to our
asymptotic prircipal components technique and show that the factor estimates
allow for time-varying risk premiums.

We motivate our refinement by considering a well-known relationship
between factor anaiysis and standard principal components analysis, Lei 2
denote the true (not estimated} covariance matrix of returns and assume that

ihey obey a strict factor model:
Z=BB'+V, (8)

where V is assumed to be a diagonal matrix. This is the model used in factor
analysis. Pre- and post-multiply both sides of (8) by V~'/2 to get

3* =B*B* +1, )
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where B* = V-2 and 3¢ = ¥ ~1/23y~V2 which is the covariance matrix
of the transformed asset returns r* = ¥~1/2;_ Note that the principal compo-
nents of (9) are identical to the factor loadings of (8) up to a nonsingular k X k
transformation. That is, if we scale each asset return by the standard deviation
of its idiosyncratic return, the principal components are identical to the factor
loadings. This same scaling can improve the efficiency of our asymptotic
principal components technique. Recall that our original procedure begins
with the n X T matrix of asset excess returns R” and the cross-product matrix
2" = R™ R"/n, and identifies the factors G" as the first k eigenvectors of £~
We have shown that G* approaches a nonsingular transformation of the true
factors F.

The following variant of our procedure also yields the true factors asymptot-
ically but converges morc quickly. Let DIAG(V) denote the matrix whose
(i, ) element is the ith diagoual clement of the covariance matrix of idiosyn-
cratic returns and whose (i, j) element is 0 for i #j. Construct the scaled
matrix of excess returns R* = DIAG(V')~"'/?R and the corresponding cross-
product matrix £*. As long as the cigenvalues of V" are bouuded (we do not
require that ¥* is diagonal), it is easy to show® that the eigenvectors of 2*
will converge to a nonsingular transformation ¢’ the factors. In most cases
these eigenve.tors wil converge more quickly thai. wili the eigenvectors of the
cross-product matrix of unscaled returns, because the idiosyncratic compo-
nents of the scaled asset returns have identical (unit) variances across assets.
The procedure is analogous to the use of weighted least squares in a regression
model.

The procedure is implemented as follows. First estimate the factors by
calculating G*, the eigenvectors of Q" 'lhenastlmatethedlagonalelementsof
V* by calculating the residual variance of a regression of R" on G" (plus a
constant). Calculate @*" =(1/a)R**R"™* and reestimate G"*. Empirically, our
sample sizes are sufficiently large that G** does not provide much improve-
ment over G". Applications with smaller cross-sectional samples may find
greater improvement. Note, also, that we must use estimates of the idiosyn-
cratic vanancs, whereas our proof assumes knowledge of the true idiosyn-
cratic variances. Since we are allowing » to approach infinity, with T fixed, we
cannot rely on the standard T-consistency of V. This estimation risk may
reduce the efficiency gain of the procedure.

Recent empirical work suggests that asset risk premiums vary through time
[see, e.g., Brown, Kleidon, and Marsh (1983), Keim (1983), Keim and
Stambaugh (1986), and Ferson, Kandel, and Stambaugh (1987)). The analysis
in section 3.1 assumes that asset returns follow an exact multi-factor asset

The prous 1s availabie from the authors. In it we use a shghtly stronger assumption about the
mean square 1dxosyncrat1c returns. Let z, =& - ¥, 2°=(z,...,2,), and Q" = E[z"z"]. In place
of plim €"'¢"/n = 0> we assume ¢hat "Q"n is bounded for all ».
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pricing modél and that B is constant, but places no restrictions on the time
series properties of the factor-risk premiums, v,. Thus, our factor estimation
procedure requires time-constant betas but allows time variation in risk
premiums. In fact, f; and vy, ar¢ not separately identified. Empirically, we find
temporal variation in the estimated risk premiums. In particular, there are
sggmmmmsammmmmmm
(1985).

Although allowing for variation in the risk premiums is consistent with
variation to the underlying primitive’ parameters of the model (e.g., variation
inexp)euedmrginnluﬁlitynﬁos&ommopﬁmnychoseneonstmp&on
stream). .

3.3. Empirical properties of factor estimates

In this section we compare our estimated factors with staadard stock market
portfolio proxies and interest rate variables. We alsc provide simulation
evidzace on the accuracy of the asymptotic principal components technique in
an approximate factor model environment.

We estimate the factors and risk premiums using monthly stock returns in
four nonoverlapping five-year subperiods, 1964-1968, 1969-1973, 19741978,
and 1979-1983. The choice of five-year intervals makes our results comparable
to earlier work such as Black, Jensen, and Scholes (1972) acu Gibbons (1982).
We estimate the factors by applying asymptotic principal components to the
entire sampie of New York Stock Exchange (NYSE) and American Stock
Exchange (AMEX) firms with no missing observations over the five-year
subperiod. The numbers of firms available are 1,487, 1,720, 1,734, and 1,745,
respectively, and the number of time periods is 60 for each subperiod.* The
riskless return is assumed to be equal to the returr: on Treasury bills taken
from Ibbotson Associates (1985).

To get an understanding of the behavior of the factors in relation to
standard market portfolios we regress the excess return on the equal-weighted
and value-weighted CRSP (Center for Research in Security Prices) portfolios
on the first factor, the first five factors, and the first ten factors. To facilitate
comparisons across indices we scale the factors so that the equal-weighted
CRSP portfolio has betas equai to 1.0. The estimated intercept term and the
R? values are invariant to this type of rescaling. The results for the one-factor
and five-factor regressions are shown in table 1. An interestirg feature of tnese
regressions is that the first factor generzlly explains over 99% of the variance

“The requirement ihat firms have no missing observations climinates about 30% of the total
CRSP universe of NYSE and AMEX firms. The average number of firms with returns observed in
a given month is 2,151, 2,474, 2,567, and 2,341 in the four subperiods, respectively.
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of the equal-weighted portfolio. The remaining factors have statistically sig-
nificant explanatory power (see table 2) but obviously explain much less of the
variance. For the value-weighted portfolio the results are quite different. The
first factor still explains most of the variance of the portfolic, but mxuch less
than it does for the equal-weighted portfolio. The additicnal factors, 22ain, are
‘important. However, even with ten factors we do not reach an R? value
obtained in the relation of the equal-weighted portfolio with just one factor.’

Table 1 also includes the results of regressing the excess returns of a
portfolio of bounds with ratings below Baa (denoted JBRET') and the excess
returas on fong-term government bonds (denoted UTS) on the factor esti-
mates. These data are from Ibbotson (1979 and Ibbotson Associates (1985),
respectively. Similar variables were founc . be important factors (in explain-
ing cross-sectional differences in mean returns) by Chen, Roll, and Ross
(1986). For JBRET we use returns in excess of the riskless rate, whereas their
variable UPR uses returns in excess of the return on an Aaa bond portfolio.
The first factor explains between 7% and 40% of the variance of the junk bond
returns and the first five facters explain between 35% and 59% of the variance.
The sixth through tenth faciors do not have significant explanatory power.

The factors explain less of the variability in the excess returns on long-term
government bonds than they do for the other indexes. The first factor explains
between 0% and 11% of UTS and the first five factors explain between 18%
and 49% of the variation. The sixth through tenth factors do not have
significant explanator; power except in the 1974-1978 subperiod.

The high correlation between our factor estimates and the stock and bond
market indices is not sufficient to guarantee that we will pick up the same
cross-sectional pricing relation as Chen, Roll, and Ross (1986). However, lack
of correlation might indicate that our factor estimates omit important priced
factors. Thus, we view the correlations in table 1 as encouraging in the sense

. that a necessary (but not sufficient) condition for consistency with Chen, Roll,
and Ross is met.

Some previous empirical studies have drawn inferences about the validity of
the APT by testing whether the estimated factor risk premiums are different
from zero, un average. Although this is not the approach we take, individual
and joint tesis of whether the unconditional means of the factors are equal to
zero are presented in panel A of table 3 for the sake of comparison with earlier
work. Equivalent tests are 2lso shown for the equal-weighted stock portfolio.
The test that the means of the first five factors are jointly zero (last column) is
significant at the 10% level in the first two subperiods and not significant in the
last two. Aggregating across the four subperiods yields a statistic that is
significant at the 10% level. In general, the results in panel A of table 3 seem to

We estimate these same regressions usinig factors estimated by the iterative procedure de-
scribed above. Note that in calculating £7* each security i weighted inversely proportional to its
idiosyncratic variance. This will tend to place less weight on small firms in relation to large firms.
Since the results are virtually identical to the resulis in table 1, we do not report them here.
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Table 2

Wald test statistics and p-values for tests of explanatory power of additional factors in time series
regressions of moithly market index excess returns on factors estimated by asymptotic principal
components. Footors arc estimated using monthly stock returns on 1,487, 1,720, 1,734, and 1,745
securities over tic periods 1964-1968, 1969-1973, 1974-1978, and 1979-1983, respectively.
Cue-factor vs. five-factor test is a joint test that t“e second through fifth factors have no
explanatory power in a regression of the index on the first five factors. Five-factor vs. ten-factor
test is a joint test that the sixth through tenth factors have no explanatory power in a regression of

the index on the first ten factors.
Test
One factor vs. five factors Five factors vs. ten factors
Ho:piz-...g ',s-o . HD:BD'G' — ao"o

Index F s ( p-value)® F . ( p-value)®

1964-1968
Value-weighted stocks 32,01 (< 0.001) 2.96 (0.02)
Equal-weighted stocks 2323 (< 0.001) 3.64 W.01)
Low-grade corp. bonds 5.86 (0.001) 1.29 (0.28)
Long-term govt. bonds 297 (0.03) 0.69 0.64)

1969-1573
Value-weighted stocks 30.35 (< 0.001) 272 {0.03)
Equal-weighied stocks 10.55 (< 6.501) 5.14 (0.001)
Low-grade corp. bonds 267 (0.09) 0.95 (0.46)
Long-term govt. bonds 631 (< 0.001) 0.68 ©.64)

1974-1978
Value-weighted stocks 123.61 (<0091 1.53 (0.20}
Equal-weighted stocks 30.51 (< 0.001) 338 (0.01)
Low-grade corp. bonds 6.28 (< 0.001) 0.73 (0.61)
Long-ierm govt. bonds 3.36 ©.902) 3.15 (0.02)

1979-1983
Value-weighted stocks 24.69 (<0.001) 368 (0.01)
Equal-weighted stocks 19.00 (<0.001) 242 (0.05)
Low-grade corp. bonds 828 (< 0.001) 1.99 (0.10)
Long-term govt. bonds 5.90 (<90.001) 114 (0.35)

“Wald test as in Theil (1971, p. 313). Statistic has an F distribution under the null hypothesis.
°p-value is the prohability of obtaining a larger F statistic under the vl hypothesis.

tell us more about the power (or lack of power) of tests involving uncondi-
tional means than about the value of the true means, since we reject a zero
imean excess return for the equal-weighted stock portfolio with about the same
frequency as for the factors.® We know that witl: a sufficiently long time series

$There are two common methods of performing the Hotelling T2 test for joint hypotheses on
mean vectors that calculate different functions of ihe same basic quadratic form. One version has
a x? distribution and the other an F distribution. Although equivalent asymptotically, the latter
version is more conservative (leads to rejection less ofter) in small samples. We report the more
conservative statistic.
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Table 3

Test statistics and p-values (in parentheses) for the hypothesis that the unconditional mean factor
risk premium is equal to zero and for the hypothesis that the conditional mean factor risk
premium in January is equal to the unconditional mean factor risk premium. Test statistics are
calculated for the first through fifth factors and CRSP equal-weighted market individuaiiy and for
the first through fifth factors jointly. Factors are estimated using monthly stock returns in 1,487,
1,720, 1,734, and 1,745 securities over the periods 1964-1968, 1969-1973, 1974-1978, and

1979-1983, respectively.
bqual-
weighted  Factor Factor Factor Factor Factor Factor
Period market 1 2 3 4 5 1-5

(A) Tesis for zero unconditional factor risk premiums

1964-1968  10.i8° 1045* 1.29° 0.01* 1.37* 042° 2.78°
(0.002)> (0002) (0261) (0905) (0.246)  (0.521) (0.026)

1969-1973 210 204 247 299 230 0.01 208
(0152)  (0158) (0121)  (0.089) (0134  (0973)  (0.O3D)
1974-1978  L7° 1.54 0.00 0.39 012 016 0.52
~ M 9 (0991) (0348) (0733) (0692)  (0.761)
1979 1o 0.13 0.09 0.02 0.10 0.70

w074 ©070) (0725) (0767 (©391) (0749  (0.623)

(B) Tests for zero difference between January and unconditional factor premiums

1964-1968 6.52¢ 757 0.14¢ 7184 0.35¢ 3.03¢ 411°
{0.013) (0.008) ©0.712) 0010) (0556)  (0.087) (0.003)

1969-1973 1.89 233 36.90 443 0.65 1.90 12.57
0.174) ©.132) (0.000) 0.040) (0.423) 0.172) (0.000)

1974-1978 18.06 18.90 593 247 6.92 0.01 10.52
(0.000) (0.000) (0.018) 0.121) (0.011) (0.923) (0.000)

1979-1983 133 1.66 0.01 2212 4.56 0.711 6.95

0.254)  (0203) (0916)  (0.000) (0.037)  (0.404)  (0.000)

:Hotelling T2 test (distributed F 5o) for the hypothesis Hy: u, =0.
p-values in gaxenthes&s.
:Hotelling T* test (distributed F; ) for joint hypothesis Hy: p; = +-- =ps=0.
Wald test (distributed F, s;) for difference in mean return in January versus the rest of the
year, Ho: pyy=piny.
Modified likelihood ratio test [see Rao (1973 p. 555)] (distributed F; ) for joint hypothesis
HO: Bir = Bings i= 1,...,5.

the equal-weighted portfolic will have a mean excess return different from
7
zero.

We test for seasonality in factor mean returns by regressing the factors on a
constant and a dummy variable that is equal to one in January and zero
otherwise. Seasonality is implied by non-zero coefficients on the dummy
variable. The factors shown in panel B of table 3 exhibit significant seasonal

"For example, see Ibbotson Associates (1985).
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differences in mean returns. This is consistent with some of the anomalous
empirical evidence in relation to the CAPM. There is significant (at the 5%
level) seasonality in at least half of the subperiods for each factor except for
the fifth.

As Theorem 1 indicates, the asymptotic principal components astimates
converge to a transformation of the factors, L"F, as n approaches infinity.
Obviously, it is useful to determine whether the actual number of securities
used here is sufficiently large that we can ignore the estimation error, ¢" =
G" — L"F. To do this we present simulation results of asset return series that
conform to an approximate factor model, estimate the pervasive factors by
asymptotic principal components, and compare the factor estimates with the
‘true’ factors.

We use the first five estimated factors obtained from the 1979-1983 sub-
period as the “true’ factors, F (F is a 5 X 60 matrix). The estimates of each
asset’s sensitivity to the factors and idiosyncratic variance are obtained from
ordinary least squares (OLS) regressions of assets’ excess returns on the
factors. L2t B denote the 1745 X 5 factor sensiuvity matrix. The nondiversifi-
able component of asset returns is given by BF. Idiosyncratic returns are
constructed to be temporally independent but possibly cross-sectionally de-
pendent. The idiosyncratic return for asset i in period ¢ is constructed as

€0 =PEi_1 s i=2,...,1745,
8ll= "ln

where 7,, is a random drawing from a normal distribution with zero mean and
a variance chosen so that ¢2 = var(,) is equal to the estimated idiosyncratic
risks from the first-stagc OLS regressions and 0 <p <1. The value of p
deterriines the amount of nonfactor cross-sectional correlation ir: the sample.
A value of p =0 corresponds to the strict factor model studied originaiiy by
Ross (1976). One can show that

1+p
1-p’

lim ||V"|} < max(o?) -
n-»Qo0

which is finite as long as p <1 and the individual idiosyncratic variances are
bounded. Thus the correlation structure corresponds to an approximate factor
model as defined by Chamberlain and Rothschild (1983). Our asset return
matrix is given by BF+¢, where e is the 1745 X 60 matrix of residuals
constructed in the above manner. Factor estimaies for each iteration are given
by the first five eigenvectors of 2 = R'R/n. We compare these factor estimates
with the ‘true’ factors by examining the R? values from the regression of each
estimate on the five true factors. If there were no rotationai indeterminacy we
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Table 4

Simulation comparison of the asymptotic principal components factor estimates vs. true factors
for a five-factor model (ten iterations). frue factors, asset sensitivitics (betas) relative to the first
five factors, and idiosyncratic variances are estimated from monthly data on 1,745 firms in the
1979-1983 subperiod. Simulated returas are generated by adding a zero mean idiosyncratic return
to ihe fitted factor-related return for each of the 1,745 assets. The parameicr p deteninines the
amount of idiosyncratic cross-correlation. The R? values are from regressing the estimated factor
(column 2) on the five true factors. An R? value of 1.0 implies zero error in factor estimate.
Average R? is the mean value of R? across the ten iterations (similarly for maximum and
minimnm R2). Bias is average implied bias in estimated mispricing induced by assuming
estimated factors are true factors ('.: basis points* - aonum).

Average Maximum Minimum
P Factor R? R? R? Bias
0.0 1 0.997 0.997 0.996 -0.21
2 0.986 0.989 0.980
3 0977 0.986 0.969
4 2,965 0.977 0.948
5 0.960 0.972 0937
0.l 1 0.996 0.997 0.996 -0.14
2 0.984 0.991 0.981
3 0980 0.986 0971
4 0.966 0973 0.957
5 0.958 0.967 0.951
03 1 0.995 0.996 0.994 -0.19
2 0.985 0.986 0.982
3 0.975 0.980 0.968
4 0.959 cINn 0.949
5 0.957 0.966 0.944
0.5 1 0.993 0.994 0.992 -0.27
2 0.981 0.988 0.976
3 0.970 0.980 0.962
4 0.958 0.971 0.942
5 0.949 0.960 0.934
0.7 1 0.986 0.990 0.985 -043
2 0975 0.981 0.966
3 0.952 0.982 0.931
4 0.937 0.965 0.895
5 0.935 0972 0.904
0.8 1 0.980 0.984 0.978 -0.83
2 0.966 0.981 0.950
3 0.930 0.965 0.884
4 0.915 0.953 0.848
5 0.875 0.924 0.825
0.9 1 0.957 0.964 0.951 -1.49
2 0.866 0.959 0.719
3 0.797 0.948 0.508
4 0.573 0.849 0.062
5 0.662 0.894 0.238




G. Connor and R.A. Korajczyk, Risk and return in an equilibrium APT 269

could regress the first factor estimate on the first true factor. However, since
G" converges to L"F rather than F, we must compare each of the .actor
estimates with the full set of true factors. In the limit (as » — o0) we would
expect the R? value to be 1.0 for each regression.

Table 4 preseuts the simulation results for different values of p. The R?
values are very large for all values of p, with the possible exception of p =0.9
for factors 4 and S. A value of p = 0.9 seems implausibly large, given that we
have already extracted the first five factors. For the sake of comparison we
calculate the average intraindustry idiosyncratic cross-correlation for every
firm in our 1979-1983 subperiod. We use three-digit SIC codes to define
industries and measure idiosyncratic returns in relation to a five-factor model.
There were 1,684 firms in the 186 three-d:git indusiries that had more than one
firm. The average of the 15,364 intraindustry residual cross-correlations is
0.115. The bias parameter in the last coliinn of table 4 is discussed in tlie next
section. In general, the simulation results in’" tc thot the asymptotic prin-
cipal components technique provides accuzate estimat¢s of the pervasive
economic factors.

4. Test results

In this section we test the restrictions implied by five-factor and ten-factor
versions of the APT; we also test the CAPM using egual-weighted and
value-weighted indices. The pricing theory of section 2 imposes a testable
cross-equation restriction on the parameters of a multivariate regression of
asset excess returns on the factors. Let a” be the vector of intercepts in a
regression of R" on the factors

R"=a%" + B"F+¢", (10)

(where B" is the n ¥ [ matrix of 2sset betas). The pricing theory, as repre-
senicd By eg. (4), imnlies that a” should be identically zero. The parameter a”
is the APT analogue to Jcissen’s measure of abnormal performance [see Jensen
(1968) and Jobson (1382)]. In our tests we replace F by the asymptotic
principal components estimates of the factors, G. The rotational inde-
terminancy has no effect on the estimates of a” and ¢" [see Connor and
Korajiczyk (1986, p. 383)]. We assume that the cross-sectional sample size used
to estimate the factors is sufficiently large that the esiimation error, ¢", in
Theorem 1 can be ignored.

Using G" instead of F as the regressors in (10) induces an error in the
variables (EIV) problem when ¢" is not identically zero. The asymptotic bias
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in a; (as T — oo) implied by this EIV problem is given by

plim (4,—a,) = — (1 - y'L™L"y) 'y'L™Q:b,,

T

where Q3 is the k X k covariance matrix of factor estimation errors (¢") and
b, is the k X 1 vector of factor sensitivities of asset i. The last column of tatle
4 gives esumaics of the average bias in our simulations across the 1,745 assets.
The average bias is expressed in basis points per annum (i.e,, an entry of 1.0
represents an average bias of one hundredth of 1% per year). Our estimates of
bias are extremely small in relation to the estimation error of a;. Thus, we
conclude that any rejection of the models tested below is not likcly to be due
solely 1o ihe use of the estimated factors, G”, rather than the true factors, F.

We test for no mispricing (a™ = 0) against a general alternative hypothesis
(a"+0) as well as some specific alternate hypotheses for size-related and
seasonal effects. In addition to (10), we estimate the following model, which
allows mispricing specific to the month of January to differ iom mispricing
that exists throughout the year [see Keim (1983)):

R"=a%.e" +a}D} + B"F + ¢", (11)

where D, is a T-vector that takes on the value of unity during January and
zero elsewhere. The theory implies that a}, = a} =0 where a}}, (a}) repre-
sents the non-January (January) specific mispricing.

If asset returns follow a strict factor model in which idiosyncratic returns
are independent across assets (i.e., V" is diagonal) then joint tests oi a"=0
would be relatively straightforward. In this case one would only need the
estimates of a; and the individual standard errors of the estimates. However, if
asset returns follow only an approximate factor model (¥ nondiagenal with
bounded eigenvalues as n — o0), we also need to calculate the covariances of
d; and 4, for i + j. Without prior restrictions, this requires the estimation and
inversion of the full n X n covariance matrix ¥”. This is not feasible in our
case, since n is between 1,487 and 1,745.

VVe use two approaches to overccme this problem. Firsi, we group securities
into portfolios on the basis of firm size, which has shown ability to predict
deviations from the CAPM pricing relation, and test the hypothesis that the
portfolio abnormal returns are zero. Such a grouping procedure, however, may
mask important deviations from the model if the deviations are unrelated to
the instruments used to assign assets into portfolios.

Because of the potential masking of pricing errors, we also test the model by
estimating mispricing for each individual security. Tests of isint hypotheses
2bout mispricing across assets are made feasibie by the assumption that ¥'” is
block-diagonal where the blocks are determined by three-digit SIC codes. That
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is, firms in different three-digit industries are assumed to have uncc:ielated
idiosyncratic returns.

We present the results for the grouped portfolios first and the disaggregated
results later. In each subperiod we rank the securities with no missing
observations by firm size and form ten portfolios. We define size as the market
value of comxmon equity the month before the beginning of ihe subperiod (e.g.,
for the 1964-1968 subperiod, size is calculated as market value at the end of
December 1963). The first portfolio is an equal-weighicd porifolio of firms
from the smallest size decile, and so on. The ten time-series regressions of (10)
[or of (11)] fit into a standard multivariate regression framework. The restric-
tions that a” =0 (or ay; =a] = 0) can be tested with standard large-sample
tesis [e. g., Wald, likelihood ratio (LR), and Lagrange multiplier (LM) tests].
Alihough the tests are equivalent asymptotically, they may give conflicting
mults in smalli samples [Berndt and Savin (1977)]. In applications quite
similar {0 ours Stambaugh (1982) shows that botli the Wald and LK tests have
pronounced tendencies to reject too often. Because of these problems the test
statistics we report are modified versions of the LR test that are suggested in
Rao (1973, pp. 554-556).% The statistic is given by

[(1Z1/1%.0) -1} - (T-k-p) />, (12)

where | V(] V,]) is the determinant of ti:c maximum likelihood estimate of the
error covariance matrix from the regression in its restricted (unrestricted)
form, T is the number of time series observations, k is the number of factors,
and p is the number of cross-sections in the multivariate regression For the

assumption of normally ('nstnbuted erross) an exact small-sample distribution,
which is F(p,T— k- p). The statistic in (12) is identical to the statistic
described on page 32 of Gibbons, Ross, and Shanken (1986). The use of this
statistic or ones similarly adjusted for small samples can lead to quite different
inferences from the usual large-sample test statisiics [see Binder (1985) aad
Shanken (1985a)).

Table 5 gives the results of our tests of ilic pricing restrictions for the ten
size-based portfolios. The APT does better (a lower frequency of rejections)
than the CAPM in explaining the January seasonality in returns (* “""g
a’=0). At first glance, the APT seems to do a worse job of explaining the
nonseasonal mispricing (a}, = 0). Looking at the rejection rates across non-
nested models can be misleading, however, since a model that actually fits
better (smaller values of |a|) may be rejected if the deviations are measured
more precisely (i.e., the test has more power).

8We have also calculated the standard versions of the Wald and LR statistics.
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A closer look at the parameter estimates gives a very different picture of the
relative performance of the models than does a casual investigation of the test
statistics in table 5. Fig. 1 plots the average mispricing (across the four
subperiods) for each size portfolio in relation to the CAPM (using the
value-weighted and equal-weighted portfolios of NYSE and AMEX stocks)
and the APT with five factors. The vertical axis is the average value of a; for
each size portfolio from smallest (S1) to largest (S10). Although the aggregate
statistics repoited in table 5 indicate a stronger rejection of a” = 0 for the APT
ihan for the equal-weighted and value-weighted CAPM, the actual value of
APT mispricing is much smaller (for all but one portfolio) in relation to the
value-weighted CAPM and slightly smaller (for all but two portfolios) in
relation to the equal-weighted CAPM. Thus, the stronger rejection of the
five-factor APT is due to more precision in the estimates of a; (i.e., R? values
around 0.98 versus 0.75) rather than larger pricing errors.

Fig. 2 presents some of the most interesting results. One of the most
persistent empirical anomalies in asset pricing has been that the common
equity of small firms carns a much higher (risk-adjusted) return than the
equity of large firms, particularly in January. The results in fig. 2 indicate that,
when we use the five-factor APT to adjust for risk, there is no relation between
January-specific mispricing and firm size. Also, although the APT does not
totally explain the non-January specific size effect (see fig. 3), it does at least as
well as the versions of the CAPM. Again, this is quite different from what one
might guess from the statistics in table 5. The nature of the factor-model
approach (in which the factor estimates are chosen io expiain variation) would
lead one to expect the APT might do better in explaining a time-varying size
anomaly. It is encouraging, at least, that the evidence is consistent with a
model in which the anomalous CAPM January seasonal effect is due to assets’
different risks relative to factors with seasonal risk premiuins. Work along the
lines of Chen, Roll, and Ross (1986) may help us identify the nature of these
seasonal factors.

Before we turn to the disaggregated results we present some evidence (in
table 6) on whether the assumption of block diagonality, on the basis of
three-digit SIC codes, is reasonable. Consider forming equal-weighted industry
portfolios for each three-digit industry and estimating (10) for each industry.
For each two-cigit industry define V;;, as the error covariance matrix [from
(10)] of the component three-digii portfolios. If returns are block-diagonal by
three-digit industries, then V,, is diagonal. To test whether V,,, is diagonal,
define S, , to be the ratio of the determinants of the unrestricted and restricted
estimates of V,,. An appropriaie statistic for testing diagonality is [see
Mc:zrison (1976, pp. 258-259))

[T-15-(2-1)/3(j-1)]n$,,,
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Fig. 1. Mispricing, in perceat per annum, for ten portfolios formed by ranking on firm size. Size is
defined as market value of common stock at the beginning of each subperiod. S1 represents the
portfolio of smallest firms while S10 represents the portfsiio of largest firms. For each of four
subgeriods (1964-1968, 1969-1973, 1974-1978, 1979-1983) mispricing is estimated by the inter-
cept in the regression of monthly porifolio excess returns on a constant, and (a) monthly exce:zs
returns on the CRSP value-weighted portfolio of NYSE and AMEX stocks, denoted CAPM-VW
(long dashes connecting squares), (b) monthly excess returns on the CRSP equal-weighted
portfolio of NYSE and AMEX stocks, denoted CAPM-EW (short dashes connecting diamonds),
and (c) first five-factor estimates from the asymptotic principal components procedure, denoted
APT-5 (solid line conrecting circles). Mispricing is the average mispricing across the four
subperiods.

which, assuming normality, has an asymptotic distribution that is x> with
degrees of freedom equal to {j2— j)/2, where j is the number of three-digit
industries in the particular two-digit industry. Table 6 shows the number of
iwo-digit industries that accept and reject the null at the 0.05 level. The
industries marked N /A are those with only one three-digit industry within the
two-digit classification.’

‘The results for the CAPM, especially using the value-weighted market
portfolio, show a relatively large number of rejections. The five- and ten-factor
" models show less evidence against the block-diagonality assumption. There is

®These tests will tend to reject independence too oftca if security returns have probability
distributions with larger kurtosis than the norinal distribution [see Muirhead (1982, p. 547)].
Given the evidence of ‘fat tails’ in return distributio:s, ike evidence against independence is not as
strong as a literal interpretation of the numbers in tabi¢ & would indicate.
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Fig. 2. January-specific mispricing, in percent per annum, fcr ten portfolios formed by ranking on
firm size. Size is defined as market value of common stock at the beginning of each subperiod. S1
represents the portfelio of smallest firms, while S10 represents the portfolio of Yargest firms. For
each of four subperiods (1964-1968, 1969-1973, 1974-1978, 1979-1983) mispricing is estimated
by the slope coefficient on the January dummy variable in the regression of monthly portfolio
excess returns on a constant, January dummy variable, and (a) monthly excess returns on the
CRSP value-weighted portfolio of NYSE and AMEX stocks, denoted CAPM-VW (iong dashes
connecting squares), (b) monthly excess returns on the CRSP equal-weighted portfolio of NYSE
and AMEX stocks, demoted CAPM-EW (short dashes connecting diamonds), and (c) first
five-factor estimates from the asymptotic principal components procedure, denoted APT-5 (solid
line connecting circles). Mispricing is the average mispricing across the four subperiods.

still some evidence in these models of nonindependence across three-digit
industries.

Although the block-diagonality assumption is not strictly true, we believe it
is a reasonable first step to using disaggregated data in testing the APT.!° We
also perform tests that assume V" is diagonal. They are not reported here but
are available from the authors.

The results of the tests for the disaggregated (nongrouped) regressions are
presented in table 7. Under the assumption of block-diagonality by three-digit
industries we can estimate the multivariate regressions (10) or (11) and
calculate the iest statistic (12} separately for each industry. if the bloci-

%A potential alternative approach would be (o use relative firm size, rather than industry, to
model the correlation structure. The results in Huberman and Kandel (1985) indicate that this
approach may be fruitful.
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Fig. 3. Non-January-specific mispricing, in percent per annum, for ten pcrtfoiios formed by
ranking on firm size. Size is defined as market value of common stock at the beginning of each
subperiod. S1 represents the portfolic of smallest firms, while S10 represents the portfolio of
largest firms. For each of four subpiiiods {1964-1968, 1969-1973, 1974-1978, 1979-1983)
mispricing is es*'mated by the intercept in the regression of monthly portfolio excess returns on a
constant, January dummy variab. -, asd (a) monthly excess reiurns on the CRSP value-weighted
portfolio of NYSE ¢1d AMEX stocks, denoted CAPM-VW (long dashes connecting squares),
(b) monthly ercess returns on the CRSP equal-weighted porticlic of NYSE and AMEX stocks,
denoted CAPM-EW (short dashes connecting diamonds), and (c) first five-factor estimates from
the asymptotic principal components procedure, denoted APT-5 (solid line connecting circles).
Mispricing is the average mispricing across the four suuperiods.

diagonality assumption is true, these F statistics are independent across
blocks. However, unlike for x> random variables, we cannot aggregate across
blocks by simply summing the test statistics. We use an aggregation procedure
similar to the one suggested, in a slightly different context, by Shanken
(1985a)."! We approximate each F statistic by a x2 distribution with the same
tail area, where p is the number of cross-sections in the block. The sum of

!Shanken (1985a) suggests approximating the F statistic by a normal distribution. That is, find
the value of a unit normal with the same tail area ( p-value) as the computed F statistic. The sum
of these unit normals, divided by the square root of the number of blocks, has a unit normal
distribution. Our application is slightly different in that we are aggregating across blocks of
different sizes (i.e., the F statistics have different degrees of freedom). Our method implicitly
places greater weight on larger blocks, whereas use of the normal approximation places the same

it ales : (S e in Chanle 11008 .\
weight on each block regardless of size. Thic is not a concern for the tests in Shanken (1985aj,

since the F statistics in that study have the same degrees of freedom.
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Table 6

Test results for block-diagonality of idiosyncratic covariance matrices where blocks are defined by

three-digit SIC code industries.? ‘Accept’ represents the number of two-digit industries that fail to

reject (at the 0.05 level) independence of the component three-digit idiosyncratic errors. ‘Reject’

represents the pumber of two-digit industries that reject (at the 0.05 level) independence. ‘N/A’ is
the number of two-digit industries with only one three-digit industry.

(A) CAPM
Equal-weighted Value-weighted
Period Accept Reject N/A Accept Reject N/A
1964-68 23 24 14 9 38 14
1969-73 22 27 13 9 40 13
1974-78 20 31 12 16 35 12
1979-83 20 28 15 14 34 15
(B) APT
Five-factor Ten-factor
Perio? Accept Reject N/A Accept Reject N/A
1964-68 23 24 14 25 22 14
1969-73 28 21 13 32 17 13
1974-78 28 23 12 28 23 12
1979-83 27 21 15 27 21 15

®For each two-digit industry equal-weighted portfolios of each three-digit subindustry are
formed. Idiosyncratic returns are measured by residuals from time series regressions of industry
portfolio excess returns on market proxy excess return (CAPM) or factors (APT). Null hypothesis
is that residual covariance matrix is diagonal. Assuming normality, test statistic is asymptotically
x* with degrees of freedom equal to (2 —j)/2, where j is the number of three-digit industries
within tne two-digit industry. See Morrison (1976, pp. 258-259).

these x2 random variables has an asymptotic x? disiribution with degrees of
ireedom equal te the total number of cross-sections, n.:?

The clearest inference that one can draw from the statistics in table 7 is that
the hypothesis of no January mispricing (a} =0) is rejected even when the
APT is used as a benchmark. Over the second subperiod we reject the CAPM
but not the APT in months other than January (testing a’, =0 at the 0.01
level). Overall, these test results seem to lack power to discriminate between
the models. This is true especiaily in light of the potentially misleading
inferences that might be drawn from exclusive reliance on the significance of
the test statistics for nonnested models against general alternatives. It may be

2For the tests assuming block-diagonality, n is equal to 1,461, 1,687, 1,701, and 1,713,
respectively. This is because one industry (electric utilities) has a very large number of firms in
relation ¢o the number of time series observations per period, hence ¥ is singular or nea: singular.
For this industry w.: fot. .2d portfolios consisting of two firms each. This reduced the number of
cwgz-dsections in this indusiry irom 52, 66, 66, and 65 to 26, 33, 33, and 33 in each respective
period.
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Table 7

Modified likelihood ratio (MLR) tests for the absence of mispricing wsing individual securities.?
Estimates of mispricing obtained from a muitivariate regression of monthly security excess retums
on (a) the excess retumns on the cqual-weighted and value-weighted URSP portfolios of NYSE and
AMEX stocks and (b) five and ten factors estimated by asymptotic principal components. The
sample consists of 1,487, 1,720, 1,734, aad 1,745 securities cver the 1954-1968, 1968-1973,
1974-1978, and 1979-1983 subpesiod, respectively. Unconditional mispricing is measured by
the intercepts of the multivariate regression including a constant term. Conditional (seasonal) mis-
pricing measured by the intercept and dummy slope coefficients in a multivariate regression
including a constant term and a January dummy variable. Test statistics are calculated assum-
ing the idiosyncratic covariance matrix is block-diagonal with blocks defined by three-digit SIC
industrial codes.

R"=g"¢""+B"F+¢" 22d R"=ga%,e"" +a}D’ + B"F+4{"

CAPM APT

Equal- Value- Five Ten
Hypothesis Period weighted weighted factors factors
a"= 1964-1968 1,083 1,405 1,053 1,014
(2.000)° {0.847) (1.000) (1.000)

al=0 1964-1958 1,965 2279 738 1,589
(< 0.001) (< 0.001) (< 0.001) (0.010)

al,;=0 1964-1968 1,173 1,345 1,159 1,094
(1.000) (0.985) (1.000) (1.000)

a"=0 1969-1973 1,494 1,655 1,261 1,277
‘ (2.000) (0.786) (1.000) (1.000)
aj=0 1969-1973 3,152 3,501 1.695 1,763
(< 0.001) (< 0.001) (0.441) (9.096)

ay; =0 1969-1973 2,006 2,332 1411 1,423
(< 0.001) (< 0.001) (1.000) (1.000)

a"=0 1974-1978 1,274 1,644 1.360 1,445
(1.000) (0.883) (1.000) (1.000)

ai=0 1974-1978 2,763 4,269 2,128 1,740
(<0.001) (< 0.001) (< 0.001) (0.248)

ai,; =90 1974-1978 1,416 1,477 1,519 1,630
(1.000) (1.000) (0.999) {0.350)

a"=0 1979-1983 1,098 1,249 1,141 1,i61
(1.000) (1.000) (1.000) (1.000)

a?’=0 1979-1983 2,329 2,369 2,006 1,884
(< 0.001) (< 0.001) (< 0.001) (0.002)

al, =0 1979-1983 1,256 1,312 1,342 1,367
{1.000) (1.000) (1.000; (1.000)

*Independent variables are the CRSP stock portfolios or factor estimates produced by the
asymptetic principal components technique, G, a vector of ones, €7, and a dummy variable fer
January, D. Average mispricing is measured by a”, January-specific mispricing by aj, and
non-Januarv-specific mispricing by af,,. Within each block test statistics vre the modified LR test
[see Rao (1972, p. 555)) which has an F distribution. Test s*~tistics are apgregated across
industries. Aggregate test statistic has an asymptotic x> distribution with degrees of freedom
equai to 1,461 (1964~-3968), 1,687 (1969-1973), 1,761 (1974-1978), and 1,713 (1979-1983).

®p-vaiues in parentheses.
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(% PER ANNUM)

MEAN ABSOLUTE MISPRICING
I

PERIOD
1964-68 1969-73 1974-78 1979-83 TOTAL
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Fig. 4. Mean absclute mispricing, in percent per annum, for individual asscts. For the four
subperiods (1964-1968, 1969-1973, 1974-1978, 1979-1983) there are 1,487, 1,720, 1,734, and
1,745 assets, respectively. Mean absolute mispricing is estimated by the cross-sectional mean of
the absolute value of the intercept in a regression of monthly individual asset excess returns on a
constant, and (a) monthly excess returns on the CRSP value-weighted portfolic of NYSE and
AMEX stocks, denoted VW, (b) monthly excess returns on the CRSP equal-weighted portfolio of
NYSE and AMEX stocks, denoted EW, (c) first five-factor estimates from the asymptotic
pcincipal components procedure, denoted APTS, and (d) first ten-factor estimates from the
asymptotic principal components procedure, denoted APT10. Total represents average absolute
mispricing across the four subperiods.

that, even with the prior restrictions placed on the covariance matrix of the
residuals, these tests have low power because of the large number of assets in
relation to time series observations [see Gibbons, Ross, and Shanken (1986)).!3

Figs. 4, 5, and 6 depict the mean absciute mispricing (MAM) of the
individual assets for the alternative models. In general the APT has smaller
MAM. It is not uncommon, however, for the ten-factor mode! to have larger
MAM than the five-factor model. This may be due to estimation error of
factor loadings for factors 6 through 10 that increases the error in 4" more
than the decrease in the error of a" due to including the risk premivms of
additionai factors (this includes the case where factors 6 through 10 are not
priced).

13 o .
Also, the tendency of the p-values to cluster around zero or one indicates that assuming
block-diagonality tends to understate the standard errors.
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Fig. 5. Mean absolute January-specific mispricing, in percent per annum, for individual assets.
For the four subperiods (1964-1968, 1969-1573, 1974-1978, 1979-1983) there are 1,487, 1,720,
1,734, and 1,745 assets, respectively. Mean absolute mispricing is estimated by the cross-sectional
mean <! the absolute value of the slope coefficient on the January dummy variable in a regression
of monthly individual asset excess returns on a constant, a January dummy variable, and {a)
monthly excess returns on the CRSP value-weighted porificlio of NYSE and AMEX stocks,
denoted VW, (b) monthly excess returns on the CRSP equal-weighted portfolic of NYSE and
AMEX stocks. denoted EW, (c) first five-factor estimates from the asympiotic principal cc —po-
rents procedure, denoted APTS, and (d) first ten-factor estimates from the asymptotic principal
components procedure, denoted APT14d. Total represents average absolute January-specific mis-
pricing across the four subperiods.

Given the mixed results when testing against the general alternative hy-
pothesis of nonzero mispricing, we provide tests against the specific alternative
that mispricing is related to the market capitalization of the firm. On the basis
of Brown, Kleidon, and Marsh’s (1983) result, we postulate a linear relation
between abnormal returns and the logarithm of the value of each firm’s
common equity. We concentrate on the relations between a} and aj; and
firm size, represented as™*

Gy =wy+ LS, (13a)

ainy =0+ 0,LS;, (13b)

19 Results for a" , from (10), are available from the authors.
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Fig. 6. Mean absolute nos-January-specific mispricing, in percont per annum, for individual
assets. For the four subperiods (1964-1968, 1969-1973, 1974-1978, 1979-1983) there are 1,487,
1,720, 1,734, and 1,745 assets, respectively. Mean absolute mispricing is estimated by the
cross-sectional mean of the absolute value of the intercept in a regression of monthly individual
asset excess returns on a constani, a January dummy variable, and (a) monthly excess returns on
the CRSP value-weighted portfolio of NYSE and AMEX stocks, denoted VW, (b) monthly excess
returns on the CRSP equal-weighted portfolio of NYSE and AMEX stocks, denoted EW, (c) first
five-factor estimates from the asymptotic principal components procedure, denoted APTS, and (d)
first ten-factor estimates from the asymptotic principal components procedure, denoted AFT10.
Total represents average absolute non-January-specific mispricing across the four subperiods.

fori=1,..., n. Here, a,,, a,y,, and LS, are mean ‘abnormai’ January-specific
returns, mean ‘abnormal’ non-January-specific returns, and size (logarithm of
capitalization) of firm i. Under the null hypothesis that the pricing model is
correct, wy=w, =0, =4, =0. We observe only estimates of a,, and a,,,,
denoted 4,, and 4,,;. Thus our tests involve estimating the relations

d;;=wy+ w,LS,+v,, (14a)
The disturbances in (14) are the estimation errors of thz abnormal returns plus

errors in approximating the functional form of the relation. Given this, we
know the errors are neither independent nor identically distributed (since V"
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ce against the nuil
hypothesis in very large samples (we have approx:mately 1,700 observaiions in
the regressions reporied in table 8). This is because when we hold the
probability of type I error of the test constant, the probzbility of type II eiror
goes to zero as the sample size increases. Thus, with large sampies aii but
trivial deviations from the pricing theory will be rejected at conventional
significance levels [this property is sometimes referred to as Lindley’s paradox;

PRy P

terior odds ratio, K, for our nuil hypothesis is a simple function of the F
statistic reported in table 8, given: by : -

K=exp{ln(n-2)-F, ,_,}, (15)

bservations and F, ,_, is the vaiue of the F

tic [see eq. (54) of Rossi (1980)]. The dependence of ihe odds ratio on
sample size as well as the F statistic is clear from (15).

We first investigate the relation between January-specific abnormal returns

and fir size. From a classical sampling-theory point of vie 1wypothesis
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Zellner (1971, p. 240)] imply that var(d} — a}}) and var(d}y, — aj,) are proportional to V", where
the constants of proportionality are the (2,2) and (1,1) elements of Z, respectively. Thus, under
the assumpticn that the true a’s are linear functions of the value of LS fi.e., (13)], the error

naunamanna mateinac in (14) are nranartional in V7
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subperiods for the ten-factor APT. This is consistent with the results for the
size-grouped portfolios shown in fig. 2.

Tae results for non-January-specific returns are also consistent with those
reported above for ihe size-grouped portfolios. We find a reversal in the size
effect in the 1969-1973 subperiod. For the CAPM there is a positive relation
between our measures of abnormal returns and iirm size. During the other
periods there is the usual negative relation between abnormal returns and size.
This is consisient wiih the findings of Brown, Kleidon, and Marsh (1983),
which show a reversal of the size effect in the 1969-1973 period. The posterior
odds ratio for ,=0, =0 favors the null hypothesis only in the 1969-1973
period. These results are consistent with those depicted in fig. 3.

Our final test involves a restriction implied by an intertemporal version of
the equilibrium APT [see Connor and Korajczyk (1987)]). This model implies
there is a factor (say, the first factor) for which each asset has a sensitivity of
unity. That is, B"=(e"8"), where e" is an n-vector of ones. We call this
factor the unit-beta factor. If we could observe the true faciors, F, and if we
knew which factor corresponded to the unit-beta factor, then we could easily
test the linear restriction

B%=e", | (16)

where B.; represenis the ith column of B and we have assumed that the
factors have been ordered so that the first factor is the unit-beta factor.
However, we actually observe G" = L"F + ¢". Even if we assume ¢" =0 so
G" = L"F, there is a rotational indeterminacy problem that prevents us from
testing (16) directly. From (4) and assuming G” = L"F, we have that

R"=[B"(L")""|G"+ "= BG" +¢".

Since L" is unobservable, the only restriction imposed on B™* is that there
exists a k-vector X” (corresponding to the first column of L*) such that

ty

e (1)

This is 2 nonlinear (since A" is unknown) restriction on the coefficient matrix
B™. Let us partition B"* into B}'*, a k X k matrix formed from the first k
rows of B"*, and BJ*, a (n— k) X k matrix formed from the remaining rows
of B"* (to simplify notation we wili drop the n superscript except when this
might cause some confusion). Thus, B* =(B’, B}’). The restriction a7
implies that

B!r=e* and Bir=e"* (18)
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Table 9

Wald test for unit-beta restriction on five-factor APT for ten portfolios (equal-wzigkted portfolios
based on a ranking of market value at the beginning of each five-year subperiod). The restriction
implies that there is a linear combination of the five factors such that each of the portfolios has a
sensitivity, with respect to the linear combination, equal to 1.0. Asymptotically, the statistic has F
distribution with degrees of freedom », = § and », = 540 under the null hypothesis.

Period F statistic ( p-value)
19641968 6.62 (0.00)
1539-1973 6.27 (0.00)
1974-1978 2.36 0.59)
1979-1983 323.76 {0.00)

The first equality in (18) implies ihat A =(B;*) 'e*. Inserting this into the
second equality in (18) we get the following nonlinear cross-equation resiric-
tions on the parameters of the model:

B¥(BF) ek -e"k=0. (19)

We use a Wald test jsee Gallant (1587, p. 328)] to test (19). The results for the
five-factor APT using size-based portfolios are reported in table 9. (The tests
are not feasible using disaggregated data and there are no overidentifying
restrictions for the ten-factor model.) The tests reject the unit-beta restriction,
at the 0.05 level, for each subperiod. The rejecticns are quite strong except in
the 1974-1978 subperiod (which has a p-value of 0.04). It is difficult to
determine which aspects of the intertemporal model! are leading to the rejec-
tions in table 9. One possibility is that the option-like features of common
stock, caused by risky debt in the capital structure, create nonlinearities in the
factor structure that may invalidate the pricing restrictions [Jagannathan and
Korajczyk (1986) discuss problems caused by nonlinearities in a CAPM
context). It may be that the tests of the unii-beta restriction have more power
against this alternative than do tests of the intercept restriction. See Connor
and Korajczyk (1987) for a more detailed discussion of the intertemporal
equiiibrium version of the APT.

5. Summary

This paper implements a new set of econometric techniques for estimating
and testing the APT, using the asymptotic principal components theory first
suggested by Chamberlain and Rothschild (1983) and extended by Connor
and Korajczyk (1986).

Seciion 3 extends the asymptotic principal components technique further.
We develop a more efficient version of the estimator, and we show that the
techniques are valid for soime cases of time-varying risk premiums.
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In section 4 we test the APT and CAPM using both size-grouped portfolios
and large numbers of individual assets. The tests with individual assets are
made possible by placing prior restrictions on the structure of the covariance
matrix of idiosyncratic returns.

For mispricing that is not January-specific our five-factor version of the
APT seems to perform better than the value-weighted CAPM and zbout as
well as the equal-weighted CAPM. The APT performs much better than either
implementation of the CAPM in explaining the January-specific mispricing
related to firm size. This result is due to seasonality in the estimated risk
premiums of the multi-factor model that is nct captured by the single-factor
CAPM relations, even though the premium in the latter model also exhibits
seasonality.

We also test the prediction of an intertemporal version of the APT that
there is a factor for which all assets have a sensitivity of unity. This hypothesis
is strongly rejected for a five-factor APT.

Extensions of this work can take szveral directions. Procedures designed to
compare nonnested models [similar to those used in Chen (1983)] will improve
our understanding of the relative merits of tiic modeis. Somze improvement in
the technology may be obtained by investigating different specifications of the
error covariance matrix, V", Linking the seasonality in estimated factor risk
premiums to more fundamental economic variables should help us understand
the nature oi ihe observed seasonal effects.

Our empirical results indicate that while neither of our implementations of
the APT or CAPM is a perfect model of asset pricing, the APT is consistent
with the persistent size-related seasonal effects in asset pricing. Empirically,
the model seers to be a reasonalhle alternative to the CAPM.
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