A smart place to work? Big data systems, labour, control, and modern retail stores

Leighton Evans¹ and Rob Kitchin²

1. School of Media, University of Brighton, UK.
2. NIRSA, National University of Ireland Maynooth, County Kildare, Ireland

Abstract
The modern retail store is a complex coded assemblage and data-intensive environment, its operations and management mediated by a number of interlinked big data systems. This paper draws on an ethnography of a superstore in Ireland to examine how these systems modulate the functioning of the store and working practices of employees. It was found that retail work involves a continual movement between a governance regime of control reliant on big data systems which seek to regulate and harnesses formal labour and automation into enterprise planning, and a disciplinary regime that deals with the symbolic, interactive labour that workers perform and acts as a reserve mode of governmentality if control fails. This continual movement is caused by new systems of control being open to vertical and horizontal fissures. While retail functions as a coded assemblage of control, systems are too brittle to sustain the code/space and governmentality desired.

Keywords: retail, work, big data, code/space, governmentality, discipline, control
Introduction: The modern retail store as a big-data environment

Modern retail is a data intensive business reliant on extensive information management systems such as Enterprise Resource Planning (ERP), Supply Chain Management (SCM), and Customer Relationship Management (CRM). These systems aim to facilitate greater coordination and control within a retail organisation, and with suppliers and customers, using big data – that is, vast quantities of fine-grained (at the level of individual products, staff, customers), exhaustive and quickly transitioning data produced through the everyday, routine interactions with the various systems used to conduct business (Kitchin 2014). ERP seeks to standardize and make interoperable an organisation’s multiple databases and software systems (relating to purchasing, warehousing, inventory, transport, marketing, accounting, personnel management and rostering, project management, customer relations) ensuring that data and processes can be accessed and managed through one over-arching system (Dery et al. 2006). SCM is used to organize the procurement, movement, management and storage of materials from suppliers to warehouses and stores (Chopra and Meindl 2012). CRM seeks to build a personalised relationship with customers by capturing patterns of previous purchases and using the information to offer loyalty rewards and special offers, and providing prompts to staff and systems so they appear to ‘know’ the customer (Sigala 2005). Such big data systems are seen as vital for producing extended coordination and improved decision-making and operational intelligence, creating organisational efficiencies, innovating new services and business models, and improving customer experience, thus leveraging additional profit and competitive advantage while reducing risks, costs and operational losses. In addition, they are marketed as enabling retailers to be more nimble, opportune, flexible, innovative and smart in how they are organised and operate (Manyika et al. 2011).

These big data systems are having profound effects on the nature of retail workplaces and labour. On the one hand, these systems and the coded objects, infrastructures, practices, and processes that constitute them form a vast coded assemblage that works to produce retail spaces as code/spaces (Dodge and Kitchin 2005). That is, a dyadic relationship operates between the software systems and the spatiality of retail spaces – they are mutually constituted, with the functioning of the retail store dependent on the software to the extent that if it fails then the space is not produced as intended (Dodge and Kitchin 2005). For example, if the checkout tills crash the store transforms from a space of consumption to a warehouse since there is no other way of scanning items to know prices or process payments. Similarly, if an element of the SCM system fails, then part of the distribution network grinds to a halt as there is no other means for allocating and processing delivery orders. As Kitchin
and Dodge (2011) detail, the production of code/space has profound effects on the nature of
governmentality operating within the enclosure of the store and their chains of distribution,
shifting processes from those of discipline to control.

On the other hand, these systems change labour practices in three respects. First, it changes the forms of work with tasks being mediated by digital devices and practices.
Second, it replaces some work tasks with automation or semi-automation (such as self-
service checkout tills, or automatically computed delivery routes). Third, as with the
production of space, it changes the nature of governmentality and the way in which the work
of staff is managed, overseen and regulated. With respect to the second and third points,
Danaher (2016a) interprets this Second Machine Age (Brynjolfsson and McAfee, 2014) as being one in which technological infrastructures will create less human labour, but not in the
way Keynes (1936) envisaged wherein a planned form of technological unemployment would exist (Floridi 2014). Instead, a fear of idleness, a failure to decouple employment and income,
and the positioning of the Protestant work ethic as the central ethical position of our time
have meant there is a dependency on working with and under the technological conditions
that may have released humans from such labour. Indeed, Correll et al. (2014) argue that the
 technological conditions of modern labour have created a subject caught in precarious
employment situations, such as retail work, that is always available for work, and cannot get
enough work, but also must be held in reserve for work at any time.

Within such an epoch, an epistocracy emerges (Estlund, 1993) that constitutes a
particular kind of governance based on computer-programmed algorithms (Danaher, 2016a).
Algorithms are used to collect, collate and organise data on which decisions in the workplace
are made. Algorithms both assist in how data is structured and processed and communicated
through relevant governance systems, and structure and constrain how workers interact with
systems, one another, the data, and the broader community that is affected by such systems.
As Fuller and Goffey (2012: 135-136) point out, data mediated through number-crunching
algorithms are understood as more reliable and trustworthy (and aligned with key
performance indicators) than the impressions of mere employees. Aneesh (2006) refers to this
as an algocracy, an organisational system distinct from the market or other organisations
which overlaps with other algocracies and interacts with them – for example, a ‘human-out-
of-the-loop’ system, such as predictive systems like stock control in supermarkets. The effect
of such systems and modes of governance in a retail store is, for Danaher (2016b), to actively
divorce labour from the reasons for doing the task, allocated by opaque systems. Morozov
(2013) refers to this as a ‘web of invisible barbed wire’, where systems of control constrain
and construct work without visibility and without requisite knowledge in labour, or labour organisations able to scrutinise these structures (Andrejevic, 2014; Mittelstat and Floridi, 2015). The result according to Danaher (2016a), echoing a point made by Sennett (1998: 109) is a lack of satisfaction in work as the worker is divorced from the motivation and reasoning for work. This obscuring of accountability means a diffusion of responsibility which results in no responsibility being afforded to failure (Sassen 2014). Smith (2012: 148) argues that the effect of such a working environment is precarious employment where workers experience degradation with a lack of political intervention in such a process as the issues are poorly understood.

Gregg (2016) contextualises the use of data in the workplace as part of the ongoing project of scientific management of work. Like in the disciplinary techniques of Gilbreth and Gilbreth (1917), Roethlisberger and Dickson (1939), and Taylorism (1903) in general, slow motion capture techniques are reproduced in the big data age, but with a commensurate increase in speed and a lack of direct intrusion (with an increase in overall intrusion, such as through work outside of the workplace in the form of expected use of email and other applications). Gregg (2016) sees technological innovations in the workplace – such as sales based ordering or inventory management prevalent in retail environments – being used to determine the speed and character of labour. This is materialised in workplace surveillance that blurs the boundary of public and private spheres (Dash, 2014). The use of technology to rid organisations of ‘time theft’ (Ehnenreich, 2010: 29) through surveillance has led to a situation where 75% of all companies monitor usage of the internet at work (Ball, 2010). A further development has been the routine use of tracking technologies on employees such as Amazon’s monitoring of employee movement in warehouses (McClelland, 2012), and the firing of employees for a lack of ‘hustle’ (Head, 2014). Following from Deleuze (1992), in a post-Fordist environment, such as the big data-infused retail store, power is mobile and mobilised by technology. The aim of this technologically-infused surveillant workplace is efficiency, a situation that Rossiter (2014: 53) views as a nightmare combination of enterprise resource planning (ERP) and key performance indicators (KPIs) used to modulate the experience of the work world. The tracking of employees becomes an informatised sovereignty (Rossiter, 2014: 68) where ‘code is king’ and data is used to maximise the effectiveness of worker bodies. With no delay between movement and data collection and processing, code means that there is always, and only, work.

This paper explores the changing conditions of work and workplaces in the age of big data in the retail sector, which presently consists of highly surveilled work environments (as
identified in supermarket supply chains by Newsome, Thompson and Commander, 2013:7-12) and task-oriented labour which oscillate between regimes of discipline and control to produce workers that are confused yet still satisfied to be working in precarious times. The paper first outlines the attempted shift from a regime of discipline to a regime of control and the horizontal and vertical fissures undermining such a shift. It then examines the code/spaces and labour governmentality operating within a large retail store drawing on observations from an ethnographic study.

Discipline and control of labour in a coded assemblage

The effect of the presence of big data systems in the workplace on the worker is to create a new kind of power that sits in contrast with previous modes of labour governmentality. Big data systems greatly intensify the extent and frequency of monitoring of labour and shifts the governmental logic from surveillance and discipline to capture and control (Deleuze 1992; Agre 1994) through the use of systems that are distributed, ubiquitous and increasingly automated, automatic and autonomous in nature (Dodge and Kitchin 2007). That is, there is a shift from Foucault’s (1979) notion of disciplinary technologies to Deleuze’s (1992) concept of technologies of control.

Foucault’s notion of discipline as a mode of power positions discipline as a ‘machine’ that works on a societal scale (Foucault, 1979). The four mechanisms of this ‘machine’ are: individuals being distributed in space; activity in space being regulated; the organisation of geneses – a series of techniques being used to organise the training of individuals; and the composition of forces where the organisation of each technique is to produce an end product of an individual subject (Savat, 2012: 16). These four mechanisms operate as an assemblage or ‘machine’ through three instruments: hierarchical observation; normalising of judgement; and the examination (through scrutiny of status or data). The success of any disciplinary mechanism is dependent upon these instruments. Any change in the apparatus (such as through new data techniques or the use of databases) acts to amplify or change the nature of discipline. As such, in a data society discipline is vastly extended across the lifeworld. For Foucault, this produced power distributes individuals in a permanent and continuous field in which they self-discipline, actively managing their behaviour to comply with expectations for fear of being caught transgressing and experiencing sanctions (Foucault, 1979).

Importantly, the shift to big data systems seeks to change the mode of governmentality to control. Here, employees become subject to constant modulation through their capture in systems that shape their behaviour explicitly or implicitly nudge it, rather
than being (self) disciplined (Savat 2012). For example, the work of checkout operatives was disciplined through the gaze of the supervisor and CCTV monitoring of work rate. Now, the mode of work – the scanning of items – becomes the mechanism of capturing and regulating behaviour. Here, work is modulated by checkout till and the act of scanning becomes a site of administration (Kitchin and Dodge 2011; Braun 2014). Big data systems change the nature of observation (through surveillance) from a model where an observer is needed to one where observation can be distant and performed by software; behaviour is no longer adjusted in case a manager is present as the ‘manager’ is always present. Here, pattern recognition of the kind deployed in everyday performance management in retail environments is not panoptical, as the panopticon requires awareness by the subject that they are being watched, subjects being aware of the model towards which they have to adjust their behaviour, subjects that care about being observed, and a sense of gratification derived from following the disciplinary regime (Savat, 2012: 23).

Modulation uses different mechanisms (e.g., recognition of patterns; anticipation of activity; organisation of antitheses; and programming of code) and instruments (e.g., simulation; sorting; sampling) in its operation as a mode of power. Whereas disciplinary machines operate to make the invisible mechanisms of control visible, modulation has no need to do this as it always acts in a non-overt way without the need for an explicit gaze. The effect is that the subject produced by this form of observation is akin to Deleuze’s objectile – not a subject itself, but a construct of patterns of code that emerge from activity in the digitally-infused world. Therefore, modulation does not ‘see’ individuals and individuals only fleetingly emerge from the flux of code and patterns, if at all (Savat, 2012: 56). This produces a dissipation of the individual and therefore a destruction of any care for the individual (Stiegler, 2010). This work world, where one is held in a state of continual anticipation, is one where the worker is always in a state of angst as the modulatory machine is always aware of the worker. In other words, governmentality is no longer solely about subjectification (moulding subjects and restricting action) but about control (modulating affects, desires and opinions, and inducing action within prescribed comportments) (Deleuze 1995; Braun 2014).

Within the context of retail, workers become continually monitored and modulated across the entire range of work through an amalgam of interlinked systems and overlapping calculative regimes designed to produce a certain kind of worker and work. While techniques of control in the modern retail store seek to be all-encompassing they do not completely eradicate discipline because they are open to vertical and horizontal disruption. The vertical fissures arise because not all big data systems employed are integrated across the
organization, being siloed to some degree, and they are open to rupture and failure. Systems are introduced at different times, utilize different technologies and standards, and are sometimes not fit for purpose, performing sub-optimally. In addition, the data in systems can be flawed or out-of-date. When control systems fail, former disciplinary systems have to fill the gap (see Newsome, Thompson and Commander, 2013: 7-8).

The horizontal fissures are that not all forms of retail labour are easily captured and controlled. Drawing on Bourdieu (1984), Sallaz (2010) analyses service labour-intensive workplaces as paradoxically prioritising formal work over interactive and emotional labour. Given that working in a retail environment involves customer-facing and customer service roles, this prioritisation of goal and target-oriented activity over softer, customer focussed interpersonal interactions is problematic. Retail work also includes a series of one-to-one interactions that significantly influence customer satisfaction (Leidner, 1992). While management seeks to influence customer feelings through the close management of employees’ emotional displays (Horschild, 1985), Sallaz (2010: 300) argues that there is a significant barrier to mobilising these kinds of symbolic labour in a big data regime. Competition demands high levels of service, but the operational mechanisms and key performance indicators (KPIs) used in big data environments are not designed to encompass this symbolic labour. While workers engage in interactive and emotional labour continually in their roles, their performance is only assessed on formal labour in the data infrastructure of the retail store. As such, disciplinary techniques are still employed in retail environments to govern symbolic labour, in continual oscillation with control techniques that govern formal work and monitor performance. These different modes of power in the workplace impact upon the experience of work for the labourer and create a work world that is paradoxical, contradictory and confusing while still being quantified and tightly regulated. The worker becomes an interface (Lazzarato, 1996) between the different functions and levels of hierarchy in the workplace, continually moving between disciplinary and control regimes and embodying these in their labour practices – and therefore always being monitored by different techniques, for different (or non-existent) reward and punishment mechanisms.

It is the changing nature of labour and governmentality in retail industry, the movement between disciplinary and control regimes, and the vertical and horizontal fissures at play that we are centrally concerned with examining through our case study, highlighting the precarious and provisional state of play due to the rapid adoption of big data systems. The empirical research took place over a nine-week period between September and November 2015 at a large retail store operated in Ireland. 20 individuals were interviewed in 15 separate
interviews, complemented with a set of 10 periods of observation of workers at work, and observant participation through work placement. The researcher was placed for one week in each of the following departments, conducting interviews, learning and performing tasks, and observing working practices: online ordering and delivery; customer services; electrical products; stock control; price integrity; compliance; and front end (checkouts). The store selected for placement is a coded assemblage that produces code/space (Dodge and Kitchin, 2005); a work environment highly dependent on code and big data systems to operate, which has profound effects on the working practices of staff and the culture and management of the store and organisation. The underlying principle that dictates the use of computational media in the store is improved efficiencies in labour.

Vertical and horizontal fissures in code/space and control

The store management consistently identified the key challenges for the store as growing sales and planning the trade deals for the week. Managers primarily use the email system, work plan, Sales Based Ordering (SBO), and store reports derived from these systems to provide, compile and communicate data for the running of the store. At the outset, it should be noted that the store is a well-run, successful environment characterised by good customer service, success with regards to KPIs, high sales, and a good atmosphere with regards to staff and staff impressions of the organisation and work. However, major issues identified by store workers were ‘no clear link between [company] vision and operations in store’, ‘honest communications’ between managers and staff, ‘clearer targets from line managers’, and ‘health and wellbeing’ (including wages and hours). The presence and functioning of a variety of data-intensive systems to produce a data intensive environment contributes to these issues. In particular, the research found three major vertical and horizontal fissures:

- People work “for the data”, where tasks become data-fulfilment and data-satisfying rather than people-, task- or customer-focussed. This is particularly problematic in roles that are distanced from direct customer interaction.
- Non-coded activities and symbolic labour (such as strong customer relationships or service), while praised, are not part of formal evaluation or appraisal of staff because they are not easily captured data.
- Systemic system failure (where systems do not work properly or are subject to disruption) and equipment issues (old, absent or malfunctioning media) form major
operational concerns and are a source of frustration for those working in the store or on particular tasks.

Working for data

An example of work being directed by data – and therefore the totalisation of formal work, or a regime of control - is the ‘picking’ operation for home deliveries that are scheduled through the company’s online ordering portal. The picking Personal Digital Assistant (PDA) device (reliant on a 3G signal rather than Wi-Fi) directs the activities of the picker and how a ‘pick’ (the route around the store and order of collection of items) is undertaken. The interaction with coded data is intense; the picker must scan their personal ID barcode with the PDA to activate themselves on the device; the picker scans each individual order (up to 6) on their trolley; this generates an order of the pick based on items location in the store; the picker must then scan the begin/end barcode (located next to the doors of the deliveries area) to start their pick. The level of automation in directing the task makes this a highly software and data dependent activity.

The mapping of the store is critical to picking, and the accuracy of the mapping becomes a function in the efficiency and accuracy of each worker. Each order in a run has an exact location: [aisle number] [left or right of aisle] [mod] [shelf number] [position on shelf]. The mapping of items in the store by stock control provides this detailed information, and the sequence on the PDA reflects this data. Once at the item, the item barcode is scanned using the PDA and if the correct item has been picked (a short text description of the item is displayed on the PDA LED screen) then the PDA displays a tick. The picker can then place the item into the correct customer box and scans a barcode at the side of each crate to end that item and move on to the next item. In theory this system is ideal; however sometimes the system 'guesses' where an item is (i.e., relies on out-of-date location data that has not been updated). This data lag can delay performance and eventually delay the departure of drivers with orders for customers. This is both a data issue and an interoperability issue, with the stock control system (and changes in stock control) not being reflected in the online order fulfilment system. The mapping of the store also causes major issues, especially on Wednesdays when the ends of aisle displays are changed for offers as old items can often still be mapped in the wrong places.

The nature of the task and the extent to which the task is dictated by the PDA and data fulfilment aspect means that this role is one which is (more than any other in store) distanced from the customer. In effect, the use of the PDA to navigate the store creates a “warehousing”
effect wherein the picking team encounters the store differently to colleagues. While there are some interactions with customers and with colleagues, the primary interaction in work is the PDA and not with the customer or the store “as a store”. This formal labour is a clear instance of a regime of control, with worker movement highly modulated – that is, planned, controlled, scheduled and timed – for maximum efficiency and minimal (ideally no) symbolic labour (as detailed in the context of civil service work by Carter et al., 2011: 90). Performance is totally objectified and informationalised, and performance review is derived from systems rather than direct observation by managers. However, staff dissatisfaction with the work derives from the malfunctioning of systems, with little reflection on Morozov’s (2013) ‘web of barbed wire’ that exerts control.

Non-coded activities and symbolic labour

There are a number of work tasks that are not mediated by coded systems or captured within employee performance metrics. Customer service is one such activity and performing the role can seriously affect the metrics of those tasks that are measured. For example, in the picker role, individual run performance is not assessed, rather overall average performance is a part of appraisal. However, as there are customers in the store at the time of the pick, pickers must if asked break off from their duties to assist customers, which in turn affects pick rates. Customer service would need to be recorded – through pausing the pick or signing off for the time needed to assist the customer (recording the activity in some way) – if it is to be rewarded, but this is not the case. Any demand for a switch to symbolic labour is however considered critical by management, and cannot be ignored. Here, the two regimes of power in the store clash most clearly; control requires following the coded system, discipline requires ignoring the system and falling into a customer service role where the reward mechanisms are fuzzy, undefined and conventional rather than data-driven.

The front end (checkouts) also includes activity that is not coded, but which is vital to the customer service element of the store. The team leader monitors checkout performance reports that give data on sales and customers, time taken by each operator, numbers of interventions, sales totals, and issues with pricing. These are measured against KPIs and form part of the appraisal of operators. However, interactive labour is critical in this role and is not assessed – only formal work is incorporated into the system of appraisal, unless a worker’s emotional or interactive labour is substantially deficient through non-coded observation and customer complaints. A different but related issue emerges in customer services. This is a very busy role, with a continual switching of tasks, interfaces, and system interactions.
Customer and colleague communication is critical, and must be continued along with the execution of other tasks. There are five systems at play at any time: post (bills; postal items; currency); lottery; stock control (returns); checkout; and telephones/staff communications. Because of this overload of systems and equipment, many phone calls cannot be answered as the role is too demanding.

Similarly, the self-serve point-of-sale (PoS) units are designed for the customer to do the ‘work’, although intervention from an operator was needed in one in every five customer interactions in the period observed. The operator of the self-scan area stands next to the monitor that displays information on each of the checkouts in the area. This screen has a touchscreen interface with the screen divided into 6 areas (one for each checkout). Checkouts that are out-of-order are indicated in red, checkouts operating correctly in green, and idle in grey. If a customer has an issue while using the checkout the display for that PoS unit turns red to alert the operator – they then restore the status of the checkout to green once the issue has been resolved. The real-time monitoring station gives feedback on items scanned, price of items and quantity of items, and keeps a running total of customers that have passed through the area in a session. While this activity can be recorded and reported upon, and despite this being a customer activity, the operator role is very manual – there are frequent interventions made and assistance given. The operator needs to be constantly vigilant for customer care, as well as attending to formal duties. The performance of this customer service role is not recorded, nor are the continual interventions to assist in self-service. The non-coded activities were seen as being, by far, the most important part of the role by the operator, yet was the least commented on when it comes to appraisal. Indeed, the role itself was summarised as a ‘thankless task’ by staff. Positive formal customer feedback is rare, although negative formal feedback is acted upon quickly by management and such sessions ignore data on task performance which is stored in the PoS system.

A very clear indication of this tension between systems of control and discipline was observed in the electrical department, specifically in the mobile phone area. Two key functions are sales and troubleshooting, with roughly a one-to-three division in time between these functions although the latter has no bearing on the KPIs of the department. The KPIs are narrowly based on new connections to pay-monthly tariffs, with a sales KPI target of 19 new connections per week (the store achieves 20-23 on average, but this is not evenly distributed through the year). Troubleshooting takes up most of their time, and during our observation we observed a worker writing texts for a customer and accessing and resetting an email account for another. The excellent customer service was not recorded in any way,
despite it being integral to the role at it taking up the most time. Again, the symbolic labour (in this case, explicitly emotional and interactive labour intended to ease customer distress with technology) is disregarded in the regime of control being sought in the store, and only fleetingly if at all attended to in the regime of discipline. With KPIs tethered so closely to data production, analysis and provision, the regime of control appears to be a barrier to the appreciation of non-coded activity in the way that Sallaz (2010) argues.

Systemic system and equipment failures

Systemic system and equipment failures are a continual issue in the store. These situations arise because although the environment is highly data dependent, it relies in some cases on old digital technology that has limited capability and lacks interoperability with other systems. These shortcomings arise because the technology was purchased at different times, with the capabilities available at the time of purchase, with the system upgraded or patched or worked around but not replaced. The wholesale replacement of a technical system is costly and brings with it certain risks, for example the disruption of transferring to a new system and embedding it into existing systems and work practices. At the same time, there are also clear risks in persisting with systems with known issues. For example, members of the store management team stated that the in-store communication systems are highly problematic.

Every day, the store managers begin the day by collating the data from the previous day (or week if on a Monday) into a report on the KPIs for the store manager to distribute to team managers. This is done via a WhatsApp group message that managers pick up on their mobile phones (as there are no bespoke direct communications systems). This information for these KPIs comes from a combination of reports that are derived in store from the Sales Based Ordering (SBO) system through a visualisation tool, information from the ‘centre’ (head office) that is emailed directly to a personal account available on one PC in the store, and information retrieved from a shared networked folder available on the limited number of PCs that is password protected. Managers must check on any figures that are missing by calling the relevant person and then sending the information to the managers to give a report on performance that is intended to structure activities on the current day. While this use of social media is innovative, it is subject to the vagaries of connection to mobile signals and Wi-Fi in the store. Moreover, despite the entire store being mapped out on an item basis through barcoding, there is no real-time tool for visualising and reporting KPI data.

With regards to the online orders fulfilment team, the routing system used to direct drivers to deliveries is a major operational and system issue. Currently, in order to monitor
KPIs the route order cannot be altered by drivers, and if the route is not followed (unless alterations are programmed by the store following a report) then the driver is penalised in their metric. This is despite the fact that local knowledge possessed by the experienced drivers who know the locations of customers and the best routing between them would improve service and costs. In particular, issues of CO2 reduction, fuel costs and customer service are raised by the use of this system (see Wang, Sanchez-Rodriguez and Evans, 2015). Routing issues occur because of a ‘0km’ issue, where distances between delivery points in towns or townlands are recorded as 0km distance whereas the distance could be up to 10km, with only 6 minutes allocated for delivery. As one driver commented: “the routing sets you up to be late.” Here, the issue is the use of a system designed for the postcode address system in the UK rather than the Irish addressing system, leading to routing being haphazard and sub-optimal. Manual routing could be used, but then the tracking of orders and data collection would be out of sync with a system that does not allow such adjustments. Here, the regime of control has a lack of fit with task demands and the pragmatic aspects of the task, but there is no regime of discipline to replace this system. Another major issue identified was illogical scheduling and routing. The order schedule on a run we observed as a passenger went: 9am-11am deliveries; 11am-1pm deliveries; 10am-12pm deliveries. The non-sequential ordering allied to the need to follow routing meant that there were inevitably delivery times that were missed. Customers had to be phoned from the van to be informed when it was apparent the delivery would be late and while this was fine with some, others could not be contacted and messages had to be left, which is far from ideal customer service.

Further, the online order system requires drivers to use a reach device that collects data on times, routes and driving performance, and feeds that information into the system to refine routing and collate driver metrics. The reach device is also used to end the run through the ‘return journey’ function that syncs the device with the system once docked at the store. Real-time syncing is not always possible due to persistent signal issues. Moreover, the reach devices are themselves technologically obsolete, with no Global Positioning System (GPS) capabilities, and their mode of connection to the systems in-store leading to a time lag (contributing to a bullwhip effect). This time lag means that the online order fulfilment system does not operate in real time; it is always contingent on drivers being in the store to synchronise the device with the in-store systems.

A particular issue for online ordering that affects punctuality with regards the picking PDA, is when the ‘end of shop’ is not recorded due to the handset crashing, or connectivity or battery issues. If this happens, the items will be returned into the stock control system.
(therefore appearing to be in the store) whereas in reality they have left the store and have been delivered. PDAs crashing was a frequent occurrence, especially at busier times where demands on the limited network are high. A major issue that occurs with a crash is the need to reprint labels, which means a ‘shop’ has to begin again. This can potentially delay the departure of the vans.

Other issues that affect stock control include the ‘trunking’ of non-food items and the scheduling and auctioning of stock reduction. Trunking is when an item appears on the system as stock but is not in store due to logistical issues. As non-food items are typically dispatched from the United Kingdom and have to travel to Ireland by boat before being fulfilled there is a considerable lag between an item appearing in book stocks and physically being in the store (indeed, some items are never in store). Here, the data itself does not match with physical availability of items, which can create customer service issues – a failure of the regime of control which results in a reversion to a regime of discipline. A systemic issue in the electrical department occurs when customers are sometimes denied sales after a customer security check on the landing page of the main portal. If a fail is recorded (a score of more than 10) then the sale is not approved. This is decided by an algorithm, and the team is not given reasons for why the customer has been denied, nor do they have sufficient understanding of the potential reasons as to why they might be denied. The security team that can intervene in these events is not based in store and finish each day at 4pm and are closed at weekends, while the shop is open from early morning until late, Monday to Sunday – so failed orders cannot be processed at many busy periods. On one day, while with the electrical team, the email to the security team was down so no fail customers could be passed for processing (delaying 4 potential sales). The automation of decision making and “black boxing” (Stiegler, 2017) of knowledge on these processes again result in a reversion to soft, symbolic labour that is subject to an undefined and undervalued focus within the store.

Stock reduction is an important part of the operations of the store, and refers to the process of deploying new stock on shelves and registering that stock as available to customers in the store systems. This task is targeted for completion at 8am every day. While this time was achieved on the morning the researcher accompanied stock control (beginning at 5am), it was commented that it is usually "an impossible task". This is particularly true at times of high volume. This is largely a product of another bullwhip effect, where data errors that inform delivery from the warehouse impact on operations in store. In addition, connectivity issues for PDAs – a function of bandwidth and coverage issues in store – create delays in data processing and retrieval also affect this task. There are over 10,000 lines in
store at any time, so this is a data and task intensive role. Prices are downloaded weekly from
the central office, and this system provides labels that must be printed and then verified
through the use of the PDA handset. This is used to create Shelf Edge Labels (SELS) which
are critical for stock check and online order fulfilment. Changeover is the most intensive part
of the role; a huge job, involving label production for legal sales of both store reductions and
increases in price for goods coming off promotion. This must be done by 7am on the day of
sales. The night crew has 2 people dedicated to this, but the main way of communication
between the night and day shifts is a communications book and a weekly meeting at 7am on a
Tuesday. Again, this is an example of highly controlled, formal work incorporating loosely
disciplined regimes of governance that are ill suited to the task resulting in data errors that
effect formal execution.

Equipment issues are also seen in the front-end operation, where the processes of
working on checkout terminals were described as: monotonous, automated, data-driven,
repetitive and characterised by a rigidity of movement, function and action. The haptic
interface is identical across terminals rather than being optimally configured for each worker.
The electrical department shares the systems overload issue; it has three web-portal based
records systems, all accessible through an antiquated desktop PC with no Wi-Fi connection.
If there is no internet connection available, there is no electrical retail. All systems are web
based, and interruptions in connectivity are frequent and problematic. Getting service back
involves unplugging and resetting, as there no technical assistance available. The data-
intensive environment itself stands in contrast to the equipment and practices of interfacing
and using data in the store.

Conclusion

Over the last thirty years retail has become ever more dependent on big data systems such as
ERP, SCM and CRM to function. These systems are seen as vital for gaining insight to guide
decision-making, creating efficiencies, improving customer service, reducing risk and costs,
and managing the work of staff. Key to such operational improvements is the retail
environment being produced as code/space and labour being monitored extensively and
modulated in new ways. Big data systems seek to introduce a regime of control that shifts the
management of labour from surveillance and discipline to capture and modulation. Yet, as we
have detailed through our empirical study this regime of control is highly precarious and
fallible, open to vertical and horizontal fissures that disrupt the various operations vital to the
functioning of a store. For example, tasks can become data-satisfying rather than operations-
or customer-focused; symbolic labour vital to customer satisfaction is largely ignored; and systemic system and equipment failures continually disrupt operations. As a consequence, retail work involves a continual movement between a regime of control that seeks to regulate and harnesses formal labour and automation, and a disciplinary regime that deals with the symbolic, interactive labour that workers perform and acts as a reserve mode of governmentality when control fails.

Consequently, rather than the retail environment becoming inherently more nimble, flexible, innovative and smart in how it is organised and operates, big data systems produce a number of effects that hinder effective operation and require staff to find workaround solutions and management to revert to disciplinary regimes. Indeed, despite the dependence and ubiquity of big data in the store, the actual equipment that interfaces with the various store systems actively work to prevent formal labour being more efficient. One manager remarked that the effect of this is that “the environment that has been created by the data flows also makes it too fast to think… there is no time to reflect on what works and what might work, as the KPIs always have to be met and decisions and planning are data, rather than knowledge, based.” In other words, while the store is a big data environment, the tools for working in the store do not match the data-intensive functioning of the store.

This in turn creates worker dissatisfaction in a number of ways, such as symbolic labour being undervalued; coping with the different (or non-existent) reward and punishment mechanisms and the oscillation and mismatch between control and disciplinary regimes and the paradoxical, contradictory and confusing situations that arise; dealing with the stress of poor functioning systems and the negative consequences with respect to customer interaction and satisfaction; and experiencing alienation with respect to the opaque systems that perform as an algocracy. Overall, there was a lack of understanding on the part of employees about how their particular activities or actions feed into the operational parameters of the organisation as a whole, and about how individual actions that are digitally mediated or facilitated contribute to the organisation. In particular, there was a sense that workers operate as cogs within a machine rather than providing a service for customers. Customer satisfaction is also being delegated to big data and algorithmic processing in order to understand ‘customer behaviour’ to drive sales and improve customer experience. The implication of such measures is that getting to know customers is no longer about face-to-face interactions and symbolic labour and more about efficiency and special offers. Moreover, the reliance on big data systems to manage customers means workers experiencing less chance to develop or exercise soft skills (or emotional labour) with customers (Barocas and Levy 2016). Yet,
face-to-face interactions do not disappear; they are still critical in the presentation of the service aspect of a retail store.

Given the issues created by the systems we have described and the difficult trading conditions experienced by the organisation since the financial crisis of 2008, store managers expressed the view that there is a need to move away from a data-driven approach towards being more customer-focussed. This needs to be “top-down and will take a long time” in the words of one manager. However, this will not be done by jettisoning the systems in place in store, but instead by streamlining processes and making the execution of data processes easier, and by recognizing and rewarding symbolic labour. Currently, fulfilling that desire would be difficult as systems are quintessential black boxes, where information and data disappear to be processed and are passed out as commands for workers. Nonetheless, it is clear that the retail industry has some way to go to effectively embed big data systems into their operations that maximize operational efficiency while enhancing worker management and experience and customer satisfaction.

Acknowledgements
The research funding for this paper was provided by a European Research Council Advanced Investigator Award, ‘The Programmable City’ (ERC-2012-AdG-323636).

Bibliography

Keynes, J. M. (1936). The general theory of employment, money and interest. Marxists.org

