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Abstract

Most ecosystems provide multiple services, thus the impact of biodiversity losses on ecosystem
functions may be considerably underestimated by studies that only address single functions. We
propose a multivariate modelling framework for quantifying the relationship between biodiversity
and multiple ecosystem functions (multifunctionality). Our framework consolidates the strengths
of previous approaches to analysing ecosystem multifunctionality and contributes several
advances. It simultaneously assesses the drivers of multifunctionality, such as species relative
abundances, richness, evenness and other manipulated treatments. It also tests the relative impor-
tance of these drivers across functions, incorporates correlations among functions and identifies
conditions where all functions perform well and where trade-offs occur among functions. We illus-
trate our framework using data from three ecosystem functions (sown biomass, weed suppression
and nitrogen yield) in a four-species grassland experiment. We found high variability in perfor-
mance across the functions in monocultures, but as community diversity increased, performance
increased and variability across functions decreased.
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INTRODUCTION

The biodiversity–ecosystem function (BEF) relationship has
been widely researched over the past few decades and ecosys-
tem functions such as biomass production or resistance to
weed invasion are generally reduced as biodiversity is lost
(Hector et al. 1999; Cardinale et al. 2011; Finn et al. 2013).
Since most investigations of the BEF relationship have
focused on a single ecosystem function, the impact of biodi-
versity losses on the delivery of ecosystem services may be
underestimated, however, several recent studies have explored
the BEF relationship for multiple ecosystem functions (multi-
functionality) (Hector & Bagchi 2007; Gamfeldt et al. 2008;
Mouillot et al. 2011; Allan et al. 2013; Byrnes et al. 2014a).
These studies have generally shown that the number of species
required to maintain multifunctionality increases with the
number of functions being considered, partly because different
sets of species control different functions (Hector & Bagchi
2007; Isbell et al. 2011).
Statistical methods for analysing the multifunctional BEF

relationship include (1) qualitatively combining univariate
models for each function (Allan et al. 2013), (2) the averaging
approach (Mouillot et al. 2011), (3) the overlap method (Hec-

tor & Bagchi 2007), (4) the single threshold method (Gamfeldt
et al. 2008) and (5) the multiple threshold method (Byrnes
et al. 2014a). These methods are summarised in Appendix S1
and have been reviewed and critiqued in Byrnes et al. (2014a).
Although these previous methods provide useful insights, each
suffers from loss of information through simplifying the mul-
tivariate nature of the data (Box 1). This information loss
includes reduced information on individual functions, correla-
tions among functions not being measured and being ignored,
species abundance being summarised as presence or absence
and continuous information being converted to categorical
thresholds. While reducing the multivariate nature of data can
be useful, it may lead to misconceptions at the individual
ecosystem function level, particularly when functions differ
markedly in their responses to changing diversity (Bradford
et al. 2014a,b; Byrnes et al. 2014b). These previous methods
also focus strongly on species richness as the main driver of
multifunctionality, ignoring other potentially highly influential
aspects of diversity, such as the relative abundances of species
or the ability of species to interact (Wilsey & Potvin 2000;
Wilsey & Polley 2004; Kirwan et al. 2007; Finn et al. 2013).
The Diversity-Interactions approach (Kirwan et al. 2009;

Connolly et al. 2013) models the BEF relationship for a single
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Box 1 Summary of the information loss associated with previous multifunctionality approaches (each described in Appendix S1) and descrip-

tion of the consolidation of the strengths of those approaches and the added benefits that the Multivariate Diversity-Interactions modelling

framework provides.

Approach Issues and information loss

Strengths that are included in the

Multivariate Diversity-Interactions

framework

Additional value of the Multivariate

Diversity-Interactions framework

(1) Combining

univariate models

No information on correlations

among functions.

Only qualitative information on

multifunctionality.

Understanding the drivers of each

individual function.

Tests the relative importance of the drivers across

functions.

Quantitative information on single functions and

on multifunctionality.

Incorporates correlations among functions into

the assessment of drivers of multifunctionality

(2) The averaging

approach

Loss of information at the

individual ecosystem function

level.

Two communities with very

different ecosystem functions can

yield the same average metric

value (e.g. with two functions,

the two functions could be equal

or one function could be very

high and the other very low, but

the two communities yield the

same average) therefore it is an

incomplete description of the

underlying multivariate distribution.

Tests the drivers of individual functions.

Tests the relative importance of the drivers across

functions.

Utilises correlations among functions in inference.

(3) The overlap

method

Ignores how sets of species that

positively influence some

ecosystem functions might

reduce other functions.

Quantifies the species that

positively influence pairs of

ecosystem functions.

Tests how all species and pairwise interactions

positively or negatively affect all functions (not

just pairs of functions), i.e. identifies conditions

under which multiple functions all perform well,

but will also identify trade-offs among functions.

(4) The single

threshold method

Converts quantitative

measurements to categorical thus

there is loss of information on

the amount by which a function

exceeds or falls below a threshold.

Subjective to the choice of

threshold.

Ignores effects of correlations

among functions.

Identifies combinations of species

that will achieve, e.g. 70% of the

maximum performance.

Quantitative predictions on how each function

performs under varying diversity characteristics.

Identifies the combinations of species and their

relative abundances that will attain, e.g. 70% of

the maximum.

(5) The multiple

threshold method

Requires carrying out the same

tests repeatedly (at each

threshold), but provides no

statistical adjustment for the

multiple tests.

Ignores effects of correlations

among functions.

Identifies combinations of species

that will achieve a certain

threshold of the maximum

performance.

Quantitative predictions on how each function

performs under varying diversity characteristics.

Provides the combinations of species and their

relative abundances that will attain a certain

percentage of the maximum.

Provides an adjustment for the multiple tests of

comparison that are needed in any

multifunctionality analysis giving statistical

reassurance on the reliability of conclusions
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ecosystem function as a function of species identities and
interactions among pairs of species. Here, we develop the
Multivariate Diversity-Interactions model to analyse the mul-
tifunctional BEF relationship by extending the univariate
Diversity-Interactions approach to a multivariate framework.
In this framework, comparisons of the model components
across ecosystem functions allow testing of the relative perfor-
mance of functions across diversity characteristics, such as
species identities, species interactions, evenness, richness and
manipulated treatments or environmental variables, and auto-
matically allows for correlations among functions. Thus, we
can identify conditions (if they exist) where all functions per-
form well relative to each other or identify where trade-offs
occur among functions. We illustrate our Multivariate Diver-
sity-Interactions framework with data for three ecosystem
functions from a four-species grassland biodiversity experi-
ment. We investigate the following aspects of ecosystem multi-
functionality:

(1) What diversity characteristics (e.g. species abundances,
species identities, species interactions, composition, richness
and evenness) affect individual ecosystem functions?
(2) How should correlations among functions be incorporated
in assessing drivers of multifunctionality?
(3) What is the relative importance of the various aspects of
diversity and environment (species identities, species interac-
tions and treatments) across functions?
(4) Are there conditions under which all functions perform
well? Are there trade-offs occurring among functions?

MATERIALS AND METHODS

The Multivariate Diversity-Interactions framework

The Diversity-Interactions model (Kirwan et al. 2007, 2009) is:

y ¼
Xs

i¼1

biPi þ aAþ
Xs

i;j¼1
i\j

dijPiPj þ e ð1Þ

where y is a single ecosystem function, Pi (Pj) is the initial rel-
ative abundance of the ith (jth) species with i, j = 1, . . ., s and
A can include measures of community abundance, block or
treatments and so a may be a vector including several coeffi-
cients. The coefficient bi is the expected performance of the
ith species in monoculture and is called the species identity
effect, dij is the interaction effect between species i and j,
Ps
i;j¼1
i\j

dijPiPj is called the diversity effect, and e ~ N(0,r2).

Further interpretations are in Kirwan et al. (2009). Addi-
tional interactions can be tested, such as interactions
between diversity (dij) and treatment (a) coefficients. Model
(1) addresses a single ecosystem function and here we
extend it to a multivariate framework to simultaneously
model the relationship between biodiversity and ecosystem
multifunctionality.
For the Multivariate Diversity-Interactions model of k func-

tions, the equation for the kth function is of the form:

yk ¼
Xs

i¼1

bikPi þ akAþ
Xs

i;j¼1
i\j

dijkPiPj þ ek ð2Þ

where bik is the identity effect for species i for ecosystem func-
tion k and dijk is the species interaction effect between species
i and j for function k. In matrix notation, the Multivariate
Diversity-Interactions model is:

Y ¼ Xbþ e
e� MVN ð0;RÞ

R ¼

r2
1 � � � r1k

..

. . .
. ..

.
0

r1k � � � r2
k

. .
.

r2
1 � � � r1k

0 ..
. . .

. ..
.

r1k � � � r2
k

2
666666666664

3
777777777775

ð3Þ

Y represents the observed matrix of ecosystem functions, X
represents the matrix of explanatory variables which includes
all terms shown in equation (2) for the kth function, b repre-
sents the matrix of model coefficients, MVN stands for multi-
variate normal and 0 is a matrix of zeros corresponding in
size to the matrix Y. The variance–covariance matrix R is a
block diagonal matrix with a k 9 k block for each plot;
within each block, the diagonal entries are the ecosystem func-
tion variances and off diagonal entries are the covariances
between the errors of each pair of functions. There are ks
identity effects and ks(s-1)/2 diversity effect terms to estimate.
The number of diversity effect terms can be reduced by mak-
ing biologically meaningful assumptions about the patterns
among the dijk interaction coefficients (for each k) using the
techniques outlined in Kirwan et al. (2009). For example,
assuming that all species interact in the same way (dijk = davk
for all i, j) or that functional groups dictate how species inter-
act (for two functional groups, dijk = dwfg1k if i, j are both
from functional group 1, dijk = dwfg2k if i, j are both from
functional group 2, dijk = dbfgk if i, j are from different func-
tional groups, where wfg = ‘within functional group’ and
bfg = ‘between functional group’).

The data set

A four-species grassland biodiversity field experiment was
established in 2002 at Merelbeke in Belgium as part of a lar-
ger agro-diversity experiment (Kirwan et al. 2007; Finn et al.
2013) and the data are publicly available as ‘site 1’ in Kirwan
et al. (2014). The species sown were two grasses (Lolium per-
enne, denoted G1, and Phleum pratense, G2) and two legumes
(Trifolium pratense, L1, and Trifolium repens, L2). Both G1
and L1 were fast-establishing species while G2 and L2 were
temporally persistent species. Thus, there were two possible
functional group classifications: grass/legume and fast-estab-
lishing/temporally persistent. A monoculture for each species
and 11 four-species mixture communities were established at
two (high and low) seed density levels giving a total of 30
plots each 8.4 m2 in size. The relative abundances in the mix-
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ture communities were systematically varied at sowing; at
each seed density level, there were four monocultures, a
community where the four species were sown in equal
abundance (0.25, 0.25, 0.25, 0.25), four communities which
were each dominated by one species (e.g. 0.7, 0.1, 0.1, 0.1)
and six communities which were co-dominated by two
species (e.g. 0.4, 0.4, 0.1, 0.1). Each community can be
described using an evenness metric (Kirwan et al. 2007),
E = [2s/(s-1)]*Σi<jPiPj = (8/3)*Σi<jPiPj. The evenness values
are E = 0 for monocultures, E = 0.64 for one species domi-
nant, E = 0.88 for two species dominant and E = 1 for all
species equally present. Inorganic nitrogen fertilizer was
applied to all plots at a rate of 150 kg N ha�1 annum�1. Fur-
ther details are available in Kirwan et al. (2014). Three
ecosystem functions were recorded: (1) aboveground biomass
of sown species (sown biomass) (t DM ha�1), (2) aboveground
biomass of weed species (weed biomass) (t DM ha�1) and (3)
the total annual yield of nitrogen in harvested aboveground
biomass (N yield) (t DM ha�1) for each plot and each harvest
in 2003, the first year of the experiment following establish-
ment. There were four harvests during the year that were
summed for each plot and each ecosystem function to give the
annual values. The experiment continued for a further 2 years,
but only results from the first year are considered here.

Analysis

The three ecosystem functions were linearly transformed to a
comparable scale allowing direct comparisons of the relative
effects of the model terms (species relative abundances, species
interactions and seed density) across the functions. High val-
ues of sown biomass and N yield, and low values of weed bio-
mass are preferred in agronomic practice; to align the
direction of desirability for all functions (i.e. make higher pos-
itive values desirable for each function), we first multiplied
each weed biomass value by �1 and added the maximum (on
the original scale) weed biomass value (Byrnes et al. 2014a)
and called this new variable weed suppression. To linearly
transform the data to a common scale, each ecosystem func-
tion (sown biomass, weed suppression and N yield) was then
converted to a percentage of the average of the highest three
values (top 10% of values from 30 plots) for that function
(Appendix S2). From here on, these transformed variables are
referred to as sown biomass, weed suppression and N yield.
We did not apply any weighting to quantify differences in
importance, which implicitly assumes that each function has
equal importance (Appendix S2).
A range of Multivariate Diversity-Interactions models were

fitted to the three transformed ecosystem functions to explore
reductions in the dimensionality of the diversity effect expla-
nation. The data rescaling ensured that model predictions for
each ecosystem function were on the same scale, which
enabled us to test specific predictions across functions to
identify conditions (if they existed) under which all functions
performed relatively well (e.g. when all ecosystem functions
performed above an a priori specified level) and to determine
if trade-offs occurred among functions under other condi-
tions (e.g. when one or more functions performed above a

specified level but others fell below). These comparisons were
made using t-tests.
All models were estimated with either maximum likelihood

(ML) or restricted maximum likelihood (REML) using SAS
software version 9.3 (SAS Institute Inc., Copyright � 2002–
2010); model comparisons for testing fixed effects were made
using likelihood ratio tests where the models were fitted using
ML, while final models were estimated and comparisons
among coefficients and predictions were performed using
REML. Multivariate normality of the residuals from the final
model was tested using Mardia’s multivariate normality test
in the MVN package (Korkmaz et al. 2014) in the software
R version 3.1.2 (R Core Team 2014). When testing model
terms across functions (e.g. the comparisons among the coef-
ficients b11, b12 and b13), there were three pairwise t-tests of
comparison (one comparison for each pair of functions), thus
a Bonferroni correction was applied to each set of three tests
to avoid the issues associated with multiple comparisons, giv-
ing the adjusted a* = 0.05/3 = 0.017. Note that the Multivari-
ate Diversity-Interactions model could be fitted to the raw
data and inference would be unchanged since only a linear
transformation has been applied. However, the benefit of
modelling the transformed ecosystem functions is the compar-
ative ability across functions which would be meaningless
with raw data modelling. Model predictions could be back-
transformed to the original scale of each ecosystem function
without affecting inference should this be desired. Note also
that the ecosystem function that requires the most complex
interaction structure may dictate the form of the final model
since the same covariates are included for each ecosystem
function; this is the case with any multivariate regression
model. Further information on fitting and interpreting multi-
variate regression models is available (for example) in John-
son & Wichern (2007). Appendices S3, S4 and S5 provide the
data, SAS and R code, and some interpretations of output to
assist readers wishing to fit the framework themselves.

RESULTS

Fitting the Multivariate Diversity-Interactions models

Summary statistics for the three ecosystem functions are given
in Table S1. After model comparisons (Table S2), the final par-
simonious model selected for the kth transformed function was

yk ¼ bG1kPG1 þ bG2kPG2 þ bL1kPL1 þ bL2kPL2

þ akDensþ dwfg1kPG1PG2 þ dwfg2kPL1PL2

þ dbfgk PG1PL1 þ PG1PL2 þ PG2PL1 þ PG2PL2ð Þ þ ek

ð4Þ

where PG1, PG2, PL1 and PL2 are the sown proportions of G1,
G2, L1 and L2, respectively, and Dens is coded �1 and 1 for
low and high seed density. The bG1k coefficient (for example)
is the expected performance of G1 in monoculture for ecosys-
tem function k at average density. The ‘within functional
group’ interaction coefficients for the two grasses and two
legumes are dwfg1k and dwfg2k, respectively, for the kth func-
tion. The ‘between functional group’ interaction coefficient
between any grass and legume is dbfgk for the kth function.
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Residuals showed no evidence of a deviation from the multi-
variate normal distribution.
Figure 1 and Table 1a show how positive species interac-

tions both within and between functional groups were strong
drivers of a positive diversity effect for each individual ecosys-
tem function [addressing question (1) as laid out in the Intro-
duction]. There were no significant seed density effects for any
function (Table 1a).
There was a positive correlation among the residuals from

sown biomass with the other two functions (Table 1b). The
estimated covariances feed directly into the tests of compar-

ison and allow for correct inference when comparing effects
across functions [addressing question (2)].

Comparisons of multifunctionality across monocultures and

multispecies communities

No one species in monoculture performed best across the
three ecosystem functions (Fig. 2, the first set of clusters of
bars). There was also no monoculture for which all three
ecosystem functions performed poorly, rather there was con-
siderable variability in performance across the functions for
each monoculture. Comparisons of the estimated monoculture
performances across ecosystem functions (Table 1a, compar-
ison of each b coefficient across functions) showed that the
performance of Lolium perenne (G1) was better for sown bio-
mass and weed suppression than for N yield, and the perfor-
mance of Phleum pratense (G2) was better for weed
suppression than both sown biomass and N yield. Not sur-
prisingly, given their nitrogen fixing abilities, the performances
of Trifolium pratense and Trifolium repens (L1 and L2) in
monoculture were far better for N yield than for either sown
biomass or weed suppression [addressing question (3)]. The
tests displayed in Fig. 2 show that choosing either of the grass
monocultures (over other monocultures) to optimise weed
suppression results in relatively poorer performances of sown
biomass (G2 only) and N yield (both G1 and G2) while
choosing either of the legume monocultures to optimise N
yield results in lower relative performances of sown biomass
and weed suppression [addressing question (4)]. Table S3 pro-
vides details of the tests illustrated in Fig. 2.
The predicted performance of ecosystem functions in com-

munity types with evenness equal to 0.64 (one species domi-
nant) varied depending on which species was dominant
(Fig. 2, the second set of clustered bars); the performance of
N yield was better relative to the other two functions when
Trifolium pratense (L1) was dominant, while the performance
of weed suppression was better relative to the two other func-
tions when Phleum pratense (G2) was dominant. When L1
was dominant, all three ecosystem functions were higher than
70% (P < 0.05 for each test). At evenness levels 0.88 (two spe-
cies co-dominant) and 1 (centroid), each function performed
at a high level; predictions for each ecosystem function and
all community types at E = 0.88 or 1 were higher than 70%
(P < 0.05 for each test). There were still some small (but sig-
nificant) differences within each cluster at the higher levels of
evenness with sown biomass generally outperforming N yield
(Fig. 2). Note that 70% has been chosen arbitrarily for illus-
tration here but should be chosen a priori in practice. If multi-
ple thresholds are tested rather than an a priori choice of
threshold, then adjustments for multiple tests should be
included.
Despite there being significant differences among the three

functions for 14 of the 15 community types presented in
Fig. 2, the magnitude of the differences decreased as evenness
increased. For example, the estimated difference between sown
biomass and N yield was 21% for Lolium perenne (G1) mono-
culture (E = 0), 14% for a four-species community dominated
by G1 (E = 0.64), 9% for a four-species community co-domi-

Figure 1 Predicted (a) sown biomass, (b) weed suppression and (c) N yield

at average seed density for each community structure, monoculture

(E = 0), one dominant species (E = 0.64), two dominant species (E = 0.88)

and all species equally abundant (E = 1). The multiple points at each value

of evenness represent the varying community types in the experimental

design. Trend lines are added to indicate patterns as evenness increases and

monocultures are labelled to indicate Lolium perenne (G1), Phleum

pratense (G2), Trifolium pratense (L1) and Trifolium repens (L2).
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nated by G1 and G2 (E = 0.88) and 6% for the centroid com-
munity (E = 1), a significant difference (t-tests, P < 0.01) in
each case but the effect size (i.e. the differences 21, 14, 9 and

6%) decreased as evenness increased (tests not shown). On
average, performance across the three functions was higher
and more stable in the communities with evenness equal to

Figure 2 Predicted response for ecosystem functions sown biomass, weed suppression and N yield for each design community type (monocultures, one

species dominant, two species co-dominant and all species equally abundant) at average seed density. Bars within a cluster that share a letter do not differ

significantly. The level of significance for all tests of comparison is determined by the Bonferroni correction, a* = 0.05/3 = 0.017. Note that, e.g. G1 mono

is a grass 1 monoculture, G1 dom is (0.7, 0.1, 0.1, 0.1), G1G2 dom is (0.4, 0.4, 0.1, 0.1) and the centroid is (0.25, 0.25, 0.25, 0.25). The species are Lolium

perenne (G1), Phleum pratense (G2), Trifolium pratense (L1) and Trifolium repens (L2). A horizontal line is included at y = 70% to aid comparisons.

Table 1 Estimated model terms for the transformed ecosystem functions sown biomass, weed suppression and N yield, (a) fixed coefficients, (b) the variance

covariance matrix (left) and correlations (right)

(a) Fixed coefficients
Ecosystem function

Sown biomass (%)

Weed suppression

(%)

N

yield (%)

Term Coefficient Est SE Est SE Est SE

G1 bG1k 66.48 4.50 a 80.29 8.47 a 45.02 4.60 b

G2 bG2k 47.95 4.50 a 91.57 8.47 b 29.08 4.60 c

L1 bL1k 77.22 4.50 a 49.75 8.47 b 97.43 4.60 c

L2 bL2k 51.88 4.50 a 33.67 8.47 a 76.26 4.60 b

Dens ak 1.15 1.31 a 0.50 2.47 a �0.63 1.34 a

G1*G2 dwfg1k 105.37 41.94 a �31.99 78.92 a 150.46 42.82 a

L1*L2 dwfg2k 64.64 41.94 a 159.97 78.92 ab �5.32 42.82 b

ΣG*L (bfg) dbfgk 87.24 18.81 a 92.95 35.39 a 65.24 19.21 a

(b) The variance covariance matrix (left) and correlations (right)
Variances and covariances Correlations

Sown biomass Weed suppression N yield Weed suppression N yield

Sown biomass 51.6 0.51 0.82

Weed suppression 49.1 182.7 0.07

N yield 43.1 6.6 53.8

Significant (a < 0.05) coefficients in (a) are highlighted in bold. Within each row (i.e. across ecosystem functions), coefficients that are not significantly dif-

ferent have a letter in common, where the level of significance determined by the Bonferroni correction is a*=0.05/3 = 0.017.

[Correction added on 5 October 2015, after first online publication: Rendering of Table 1b columns has been corrected.]
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0.88 or 1 when compared to the lower and more variable
responses in monoculture and at E = 0.64. Thus, we show
that the ecosystem functions in this experiment showed trade-
offs against one another at low levels of evenness but exhib-
ited desired levels of performance (> 70%) at higher levels of
evenness [addressing question (4)].

DISCUSSION

The Multivariate Diversity-Interactions framework developed
here provides quantitative tools to enhance our understanding
of ecosystem multifunctionality. Our framework can test how
multiple ecosystem functions are simultaneously driven by
species abundances, species identities, species interactions,
composition, richness and evenness. It can also test the
relative importance of those drivers and identify key species
and influential pairwise species interactions across multiple
ecosystem functions. The framework provides quantitative
information on individual as well as multiple functions and
can aid decision making to support the management of
ecosystems in which the high performance of several functions
is desired, such as in the agronomic communities in our
example.
Our framework integrates the analytical outputs and insights

formerly obtained from several separate multifunctionality
approaches, including species-level information provided by
the overlap approach and community-level information pro-
vided by the averaging and multiple threshold approaches. By
combining these types of information, our framework is
uniquely able to identify combinations of species and relative
abundances that produce desirable levels of multiple ecosystem
functions. For example, we found that four-species mixtures
that were co-dominated by Lolium perenne (G1) and Trifolium
pratense (L1) provided nearly maximal levels of all three
ecosystem functions (Fig. 2). As manipulated evenness
increased, we also showed that ecosystem functions were higher
on average and that the variability among the three ecosystem
functions decreased (Fig. 2). Other studies have examined
ecosystem multifunctionality over time (Isbell et al. 2011; Car-
dinale et al. 2013; Pasari et al. 2013), trophic levels and ecosys-
tem types (Lefcheck et al. 2015) but not variability among the
levels of multiple functions across a manipulated treatment.
Our agronomic example provides further evidence of the bene-
fits of increased diversity on ecosystem multifunctionality.
A key strength of the Multivariate Diversity-Interactions

framework is its comparative ability whereby model coeffi-
cients and model predictions under varying diversity condi-
tions can be tested for differences across functions. This
ability is directly enabled by the estimation of the variance
covariance matrix (Table 1b). Had three separate univariate
Diversity-Interactions models been fitted instead of a multi-
variate model, the coefficient estimates and their standard
errors (Table 1a) would be no different, but the variance
covariance matrix (Table 1b) would not have been estimated
and thus it would not have been possible to correctly make
comparisons across functions. For example, the t-test statistic
for comparing bG11 and bG13 [the expected Lolium perenne
(G1) monoculture performance for sown biomass and N yield
respectively] was 7.83 with P < 0.0001. This test and its infer-

ence are valid since the covariance between the two functions
contributes to the test statistic calculation. If, however, a zero
covariance between the estimates had been assumed, the test
statistic would be calculated (incorrectly) as 3.33 with
P = 0.002 resulting in approximately a halving of the test
statistic and any inference from this incorrect test would not
be valid. This comparative ability of the Multivariate Diver-
sity-Interactions framework allows (1) the identification of
compositions and relative abundances where all ecosystem
functions perform well or (2) the identification of how func-
tions may trade off against one another and (3) understanding
of how optimisation of one function impacts other functions.
In our example, the G2 monoculture attained 92% in weed
suppression but only 48 and 29% in sown biomass and N
yield, respectively, illustrating trade-offs among functions in
this monoculture (and others). There were no significant dif-
ferences among the ecosystem functions for the community
co-dominated by L1 and L2 and each function was higher
than 70%, illustrating conditions where all functions had simi-
larly high levels of performance (Fig. 2).
The Multivariate Diversity-Interactions framework includes

the benefits and addresses the losses of information that are
inherent in other methods for analysing multifunctionality.
Our framework estimates the relationship between individual
ecosystem functions and manipulated diversity or treatment
variables (the univariate approach, Allan et al. 2013), quanti-
fies which species positively influence ecosystem function (the
overlap method, Hector & Bagchi 2007) and can identify what
combination of species will yield a certain percentage of the
maximum of ecosystem function performance (the single and
multiple threshold methods, Gamfeldt et al. 2008 and Byrnes
et al. 2014a). In addition, our framework also measures corre-
lations among functions, provides a means for statistical tests
of comparisons across multiple functions, provides quantitative
estimates on multifunctionality across varying compositions
and relative abundances, and identifies important species and
species interactions for individual functions and tests their rela-
tive importance across functions, which other approaches can-
not do. Analysing each ecosystem function individually allows
only for qualitative inference on multifunctionality (Byrnes
et al. 2014a), while dimension-reducing indices which quantify
multifunctionality may omit important information at the indi-
vidual ecosystem function level (Bradford et al. 2014a,b; Byr-
nes et al. 2014b); the ability of our framework to assess
individual ecosystem functions in conjunction with multifunc-
tionality is therefore highly desirable. We thus present our
framework as a consolidation of the strengths of previous
approaches that also provides several additional advances in
the quantification of ecosystem multifunctionality (Box 1).
The rich information available from using our framework

goes beyond what is achievable with other approaches used to
analyse the biodiversity and ecosystem multifunctionality rela-
tionship. In our experiment, the four-dimensional simplex
design space was well represented, therefore we can use our
model to predict each ecosystem function for any set of rela-
tive abundances and compositions of these four species. For
example, we can estimate each ecosystem function for the
community compositions (0.5, 0.5, 0, 0) and (0.8, 0.1, 0.05,
0.05), even though these are not represented by any specific
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design point; this predictive power reflects an important added
advantage of the approach. Generally, when a traditional lin-
ear regression model with log(richness) as a covariate is fitted,
the model can predict at each level of richness but cannot dis-
tinguish between communities with differing relative abun-
dances at the same level of richness; e.g. the two markedly
different communities (0.25, 0.25, 0.25, 0.25) and (0.85, 0.05,
0.05, 0.05) would yield the same prediction in the traditional
model but our framework would provide unique predictions.
This distinctive trait is exclusive to our approach and is not
provided by other ecosystem multifunctionality approaches.
Some studies of single functions have included a measure of
evenness as a factor along with richness (e.g. Wilsey & Polley
2004), but our framework can jointly test the continuous
effects of evenness and richness through the diversity effect.
Richness effects can be illustrated with our framework by
predicting each ecosystem function for equi-proportional
communities at each level of richness. We can also use the
Multivariate Diversity-Interactions framework to identify
zones in the simplex space when all or most functions perform
well or at close to their maximum value.
We found that the most parsimonious model was one of

intermediate complexity, which included functional group
interactions, rather than unique interactions for all pairs of
species (Table S2). The between grass–legume functional
group interaction coefficients were strong and positive for
each function highlighting the benefits of mixing these func-
tional groups for multifunctionality in grassland systems
(Table 1a). This benefit is well documented for individual
functions (Ledgard & Steele 1992; Spehn et al. 2002; Nyfeler
et al. 2011) but is shown here for the first time for ecosystem
multifunctionality. The two grasses also interacted strongly
and positively for both sown biomass and N yield perhaps
reflecting the fast-establishing and temporally persistent traits
of G1 and G2 respectively.
The intricacies involved in research questions about ecosys-

tem multifuctionality are compounded when the ecosystem is
more complex. It is therefore not surprising that difficulties
can arise with our multivariate approach when the numbers
of species or ecosystem functions increase. These difficulties
are a natural consequence of the increasing complexity of the
system; we summarise them and outline possible solutions in
the following three points.
(1) When the number of species increases, the number of
coefficients per ecosystem function also increases. Kirwan
et al. (2009) suggested constraints among interaction coeffi-
cients to alleviate this problem and here we constrained inter-
action coefficients according to functional groupings. Kirwan
et al. (2009) and Connolly et al. (2011, 2013) each provide
alternative solutions to reduce the dimensionality of the diver-
sity effect description which readily apply to our multivariate
setting. In our experience with single ecosystem functions, it is
frequently possible to model the diversity effect using a small
number of coefficients even with high species richness, e.g. a
10-species grassland system (Connolly et al. 2011) and a 72-
species bacterial system (Connolly et al. 2013) were both mod-
elled with just two diversity coefficients. It is also possible to
test for biologically meaningful patterns among the identity
effect (bi) coefficients.

(2) When the number of ecosystem functions increases, so
too does the overall number of coefficients; our method main-
tains individual function information and if this is desirable
then there is no option but to increase the number of equa-
tions and hence number of coefficients used to describe the
system. If individual function information is not required,
then alternative multifunctionality approaches (Appendix S1)
may be more useful and we encourage their usage.
(3) We used a Bonferroni correction to adjust for multiple
comparisons but if the number of ecosystem functions were to
increase so too would the number of comparisons resulting in
the criterion for a significant result becoming stricter and
Bonferroni adjustments would likely be unduly conservative
(Gotelli & Ellison 2004). The multiple comparisons issue
arises in other approaches developed for analysing multifunc-
tionality (e.g. Hector & Bagchi 2007; Gamfeldt et al. 2008;
Isbell et al. 2011; Byrnes et al. 2014a) but has not been dealt
with in any of those methods. Here we show that adjusting
for multiple comparisons can be relatively straightforward, at
least for a small number of functions. For a larger number of
functions, alternative more powerful large scale methods for
adjusting for multiple comparisons to the Bonferroni correc-
tion should be used (e.g. Donoghue 2004; Verhoeven et al.
2005).

The Multivariate Diversity-Interactions framework is appli-
cable to data from many types of designed experiments
although sometimes it is not appropriate. For example, it is
not recommended to fit a Diversity-Interactions model to an
experiment with monocultures of each species and replicates
of only one type of mixture that contains all species in equal
relative abundances (e.g. Griffin et al. 2009). In such a design
there is inadequate coverage of the simplex space and all mix-
tures are equal in respect of diversity manipulations (richness
and evenness are constant across all mixtures), therefore it is
not possible to estimate pairwise interactions. Many biodiver-
sity experiments have equi-proportional mixtures across a
manipulated gradient of richness (e.g. Hector et al. 1999;
Roscher et al. 2004) and a smaller number of studies manipu-
lated evenness at a single level of richness (e.g. Wilsey & Pot-
vin 2000; Finn et al. 2013). Our framework is fully suited to
the analysis of such data as has been shown in previous work
in the univariate setting (e.g. Connolly et al. 2011) for richness
manipulations and in our example here for evenness manipu-
lations. A design with both evenness and richness manipula-
tions combined with our modelling approach would provide
even further predictive power but both manipulations are not
a requirement. Note that the estimation of pairwise interac-
tion terms does not specifically require two-species mixtures in
the design. It is also possible to apply the Multivariate Diver-
sity-Interactions framework to observational data although
reliability would depend on the data in question as the usual
regression model caveats apply; these include ensuring there is
sufficient representation in the design space and that caution
is exercised in inferring causation from observed correlations.
The Multivariate Diversity-Interactions framework is flexible

and can be extended in several directions, four of which are
highlighted here. (1) The model can analyse multiple ecosystem
functions across a range of treatments or environments. Here
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we presented data with two sown seed densities; however, other
treatments, such as different levels of applied nitrogen, can
easily be incorporated into the model (e.g. see Kirwan et al.
2009). (2) The framework can be extended for the analysis of
multiple functions across temporal and spatial variables (Isbell
et al. 2011), as has already been done for the univariate Diver-
sity-Interactions modelling approach (Kirwan et al. 2007; Finn
et al. 2013). (3) It is possible to allow for nonlinearity in the
relationship between the ecosystem functions and the species
interactions (see the Generalised Diversity-Interactions
approach by Connolly et al. 2013). (4) The model here assumes
a constant variance across plots for each ecosystem function
but could easily be adjusted if this were not the case, e.g. the
variance for an ecosystem function could differ between mono-
culture and mixture communities (Schmid et al. 2008). These
potential extensions further illustrate the benefits of our frame-
work. Structural equation models have been used to assess the
biodiversity and ecosystem function relationship for single
functions (e.g. Grace et al. 2007; Bowker et al. 2010). These
models may also have a useful role in understanding ecosystem
multifunctionality, however initial attempts to do so may not
be valid due to the questionable model selection process used
(see PloS ONE reader comments on Mouillot et al. 2011).
The Multivariate Diversity-Interactions framework exami-

nes the multifunctional BEF relationship through a multivari-
ate model fit that does not suffer from the loss of information
inherent in other approaches. The framework consolidates the
strengths and improves on the weaknesses of previous
approaches for analysing ecosystem multifunctionality. It can
identify the drivers of multiple ecosystem functions and test
the relative performances across functions. The Multivariate
Diversity-Interactions framework can be adapted to suit vary-
ing experimental conditions and is a valuable tool to improve
understanding of ecosystem multifunctionality.
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